The goal of this note is to announce certain results in orbit equivalence theory, especially concerning the approximation of p.m.p. standard equivalence relations by increasing sequences of sub-relations, with application to the behavior of the Bernoulli percolation on Cayley graphs at the threshold .
Le but de cette note est d'annoncer certains résultats d'équivalence orbitale, concernant notamment la notion d'approximation de relations d'équivalence standard préservant la mesure de probabilité par suites croissantes de sous-relations, avec application au comportement en de la percolation de Bernoulli sur les graphes de Cayley.
Accepted:
Published online:
Damien Gaboriau 1; Robin Tucker-Drob 2
@article{CRMATH_2016__354_11_1114_0, author = {Damien Gaboriau and Robin Tucker-Drob}, title = {Approximations of standard equivalence relations and {Bernoulli} percolation at \protect\emph{p}\protect\textsubscript{\protect\emph{u}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1114--1118}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.09.011}, language = {en}, }
TY - JOUR AU - Damien Gaboriau AU - Robin Tucker-Drob TI - Approximations of standard equivalence relations and Bernoulli percolation at pu JO - Comptes Rendus. Mathématique PY - 2016 SP - 1114 EP - 1118 VL - 354 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2016.09.011 LA - en ID - CRMATH_2016__354_11_1114_0 ER -
Damien Gaboriau; Robin Tucker-Drob. Approximations of standard equivalence relations and Bernoulli percolation at pu. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1114-1118. doi : 10.1016/j.crma.2016.09.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.011/
[1] Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc., Volume 234 (1977) no. 2, pp. 289-324
[2] Invariants de relations d'équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci., Volume 95 (2002), pp. 93-150
[3] Invariant percolation and harmonic Dirichlet functions, Geom. Funct. Anal., Volume 15 (2005) no. 5, pp. 1004-1051
[4] D. Gaboriau, R. Tucker-Drob, Approximations and dimensions of standard equivalence relations, in preparation.
[5] Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Relat. Fields, Volume 113 (1999) no. 2, pp. 273-285
[6] Sub-equivalence relations and positive-definite functions, Groups Geom. Dyn., Volume 3 (2009) no. 4, pp. 579-625
[7] Asymptotically invariant sequences and approximate finiteness, Amer. J. Math., Volume 109 (1987) no. 1, pp. 91-114
[8] Probability on Trees and Networks, Cambridge University Press, New York, 2017 (pp. xvi + 699)
[9] Indistinguishability of percolation clusters, Ann. Probab., Volume 27 (1999) no. 4, pp. 1809-1836
[10] Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.), Volume 2 (1980) no. 1, pp. 161-164
[11] Percolation on nonamenable products at the uniqueness threshold, Ann. Inst. Henri Poincaré Probab. Stat., Volume 36 (2000) no. 3, pp. 395-406
Cited by Sources:
Comments - Policy