We propose a new, black-box online stabilization strategy for reduced basis (RB) approximations of parameter-dependent advection–diffusion problems in the advection-dominated case. Our goal is to stabilize the RB problem irrespectively of the stabilization (if any) operated on the high-fidelity (e.g., finite element) approximation, provided a set of stable RB functions have been computed. Inspired by the spectral vanishing viscosity method, our approach relies on the transformation of the basis functions into modal basis, then on the addition of a vanishing viscosity term over the high RB modes, and on a rectification stage – prompted by the spectral filtering technique – to further enhance the accuracy of the RB approximation. Numerical results dealing with an advection-dominated problem parametrized with respect to the diffusion coefficient show the accuracy of the RB solution on the whole parametric range.
Nous proposons une nouvelle strategie pour stabiliser l'approximation d'un problème de diffusion–transport avec transport dominant par une méthode de bases réduites. Cette strategie, opérée en ligne, est indépendante de la technique « haute fidélité » utilisée « hors ligne » ; elle trouve son inspiration dans la méthode de la viscosité spectrale évanescente. Par une diagonalisation sur l'espace de base réduite, on introduit une nouvelle base modale, qui permet d'ajouter au problème réduit un terme de viscosité évanescent sur les modes suffisant pour stabiliser l'approximation. Une méthode de rectification de la solution (semblable aux techniques de filtrage spectral) de ce problème est enfin opérée afin d'améliorer la précision de cette approximation. Les résultats numériques obtenus pour un problème avec transport dominant dont l'intensité est parametrisée montrent que l'approximation réduite résultante est stable et précise sur tout l'intervalle des paramètres.
Accepted:
Published online:
Yvon Maday 1, 2, 3; Andrea Manzoni 4; Alfio Quarteroni 4
@article{CRMATH_2016__354_12_1188_0, author = {Yvon Maday and Andrea Manzoni and Alfio Quarteroni}, title = {An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1188--1194}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.008}, language = {en}, }
TY - JOUR AU - Yvon Maday AU - Andrea Manzoni AU - Alfio Quarteroni TI - An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems JO - Comptes Rendus. Mathématique PY - 2016 SP - 1188 EP - 1194 VL - 354 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2016.10.008 LA - en ID - CRMATH_2016__354_12_1188_0 ER -
%0 Journal Article %A Yvon Maday %A Andrea Manzoni %A Alfio Quarteroni %T An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems %J Comptes Rendus. Mathématique %D 2016 %P 1188-1194 %V 354 %N 12 %I Elsevier %R 10.1016/j.crma.2016.10.008 %G en %F CRMATH_2016__354_12_1188_0
Yvon Maday; Andrea Manzoni; Alfio Quarteroni. An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1188-1194. doi : 10.1016/j.crma.2016.10.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.008/
[1] A two-grid finite-element/reduced basis scheme for the approximation of the solution of parametric dependent PDE, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 435-440
[2] Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004
[3] A posteriori energy-norm error estimates for advection–diffusion equations approximated by weighted interior penalty methods, J. Comput. Math., Volume 26 (2008), pp. 488-510
[4] On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math., Volume 43 (1992) no. 1–2, pp. 81-98
[5] Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs in Mathematics, Springer, 2016
[6] RB (Reduced basis) for RB (Rayleigh–Bénard), Comput. Methods Appl. Mech. Eng., Volume 261–262 (2013), pp. 132-141
[7] The variational multiscale method – a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., Volume 166 (1998), pp. 3-24
[8] Analysis of the spectral vanishing viscosity method for periodic conservation laws, SIAM J. Numer. Anal., Volume 26 (1989) no. 4, pp. 854-870
[9] Numerical Models for Differential Problems, Modeling, Simulation and Applications (MS&A), vol. 8, Springer-Verlag, Italy, 2014
[10] Reduced Basis Methods for Partial Differential Equations. An Introduction, Unitext Series, vol. 92, Springer, 2016
[11] Stabilized reduced basis method for parametrized advection–diffusion PDEs, Comput. Methods Appl. Mech. Eng., Volume 274 (2014) no. 1, pp. 1-18
[12] Robust a posteriori error estimates for stationary convection–diffusion equations, SIAM J. Numer. Anal., Volume 43 (2005) no. 4, pp. 1766-1782
Cited by Sources:
Comments - Policy