Let be the two points above ∞ on the real hyperelliptic curve . We show that the divisor is torsion in Jac J for a dense set of . In fact, we prove by degeneration to a nodal that an associated period map has derivative generically of full rank.
Soient les deux points de la courbe hyperelliptique réelle au-dessus du point ∞ de . On montre que le diviseur est de torsion dans Jac J pour un ensemble dense de . En fait, on démontre par réduction à un avec des points doubles que la dérivée d'un morphisme de périodes est génériquement surjectif.
Accepted:
Published online:
Brian Lawrence 1
@article{CRMATH_2016__354_12_1219_0, author = {Brian Lawrence}, title = {A density result for real hyperelliptic curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {1219--1224}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.014}, language = {en}, }
Brian Lawrence. A density result for real hyperelliptic curves. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1219-1224. doi : 10.1016/j.crma.2016.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.014/
[1] Extremal Polynomials and Riemann Surfaces, Springer, Berlin, 2012
[2] Conjugate algebraic integers in real point sets, Math. Z., Volume 84 (1964), pp. 415-427
Cited by Sources:
Comments - Policy