Comptes Rendus
Algebraic geometry
A density result for real hyperelliptic curves
Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1219-1224.

Let {+,} be the two points above ∞ on the real hyperelliptic curve H:y2=(x21)i=12g(xai). We show that the divisor ([+][]) is torsion in Jac J for a dense set of (a1,a2,,a2g)(1,1)2g. In fact, we prove by degeneration to a nodal P1 that an associated period map has derivative generically of full rank.

Soient {+,} les deux points de la courbe hyperelliptique réelle H:y2=(x21)i=12g(xai) au-dessus du point ∞ de P1. On montre que le diviseur ([+][]) est de torsion dans Jac J pour un ensemble dense de (a1,a2,,a2g)(1,1)2g. En fait, on démontre par réduction à un P1 avec des points doubles que la dérivée d'un morphisme de périodes est génériquement surjectif.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.10.014

Brian Lawrence 1

1 Department of Mathematics, Building 380, Stanford University, Stanford, CA, 94305, USA
@article{CRMATH_2016__354_12_1219_0,
     author = {Brian Lawrence},
     title = {A density result for real hyperelliptic curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1219--1224},
     publisher = {Elsevier},
     volume = {354},
     number = {12},
     year = {2016},
     doi = {10.1016/j.crma.2016.10.014},
     language = {en},
}
TY  - JOUR
AU  - Brian Lawrence
TI  - A density result for real hyperelliptic curves
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1219
EP  - 1224
VL  - 354
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2016.10.014
LA  - en
ID  - CRMATH_2016__354_12_1219_0
ER  - 
%0 Journal Article
%A Brian Lawrence
%T A density result for real hyperelliptic curves
%J Comptes Rendus. Mathématique
%D 2016
%P 1219-1224
%V 354
%N 12
%I Elsevier
%R 10.1016/j.crma.2016.10.014
%G en
%F CRMATH_2016__354_12_1219_0
Brian Lawrence. A density result for real hyperelliptic curves. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1219-1224. doi : 10.1016/j.crma.2016.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.014/

[1] A. Bogatyrev Extremal Polynomials and Riemann Surfaces, Springer, Berlin, 2012

[2] R.M. Robinson Conjugate algebraic integers in real point sets, Math. Z., Volume 84 (1964), pp. 415-427

Cited by Sources:

Comments - Policy