Comptes Rendus
Équations différentielles/Géométrie différentielle
Surfaces de Bonnet et équations de Painlevé
Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 40-44.

Nous montrons que les équations du repère mobile des surfaces de Bonnet conduisent à une paire de Lax matricielle isomonodromique d'ordre deux pour la sixième équation de Painlevé.

We show that the moving frame equations of Bonnet surfaces can be extrapolated to a second order, isomonodromic matrix Lax pair of the sixth Painlevé equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.10.019

Robert Conte 1, 2

1 Centre de mathématiques et de leurs applications, École normale supérieure de Cachan, CNRS, Université Paris-Saclay, 61, avenue du Président-Wilson, 94235 Cachan cedex, France
2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
@article{CRMATH_2017__355_1_40_0,
     author = {Robert Conte},
     title = {Surfaces de {Bonnet} et \'equations de {Painlev\'e}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {40--44},
     publisher = {Elsevier},
     volume = {355},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crma.2016.10.019},
     language = {fr},
}
TY  - JOUR
AU  - Robert Conte
TI  - Surfaces de Bonnet et équations de Painlevé
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 40
EP  - 44
VL  - 355
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2016.10.019
LA  - fr
ID  - CRMATH_2017__355_1_40_0
ER  - 
%0 Journal Article
%A Robert Conte
%T Surfaces de Bonnet et équations de Painlevé
%J Comptes Rendus. Mathématique
%D 2017
%P 40-44
%V 355
%N 1
%I Elsevier
%R 10.1016/j.crma.2016.10.019
%G fr
%F CRMATH_2017__355_1_40_0
Robert Conte. Surfaces de Bonnet et équations de Painlevé. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 40-44. doi : 10.1016/j.crma.2016.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.019/

[1] A.I. Bobenko; U. Eitner; A.V. Kitaev Surfaces with harmonic inverse mean curvature and Painlevé equations, Geom. Dedic., Volume 68 (1997), pp. 187-227

[2] O. Bonnet Mémoire sur la théorie des surfaces applicables sur une surface donnée. Deuxième partie: Détermination de toutes les surfaces applicables sur une surface donnée, J. Éc. Polytech. Math., Volume 42 (1867), pp. 1-151 http://gallica.bnf.fr/ark:/12148/bpt6k433698b/f5.image

[3] J. Chazy Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Acta Math., Volume 34 (1911), pp. 317-385

[4] R. Conte On the Lax pairs of the sixth Painlevé equation, RIMS Kôkyûroku Bessatsu, Volume B2 (2007), pp. 21-27 | arXiv

[5] R. Conte; A.M. Grundland Reductions of Gauss–Codazzi equations, Stud. Appl. Math., Volume 137 (2016), pp. 306-327 | DOI

[6] R. Conte; M. Musette The Painlevé Handbook, Springer, Berlin, 2008 Russian translation: Метод Пенлеве и его приложения (Regular and Chaotic Dynamics, Moscow, 2011)

[7] R. Fuchs Sur quelques équations différentielles linéaires du second ordre, C. R. Acad. Sci. Paris, Ser. I, Volume 141 (1905), pp. 555-558

[8] M. Jimbo; T. Miwa Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II, Physica D, Volume 2 (1981), pp. 407-448

[9] R. Lin; R. Conte; M. Musette On the Lax pairs of the continuous and discrete sixth Painlevé equations, J. Nonlinear Math. Phys., Volume 10 (2003) no. Supp. 2, pp. 107-118 http://www.sm.luth.se/~norbert/home_journal/10s2_9.pdf .ps (and)

[10] G. Mahoux Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients (R. Conte, ed.), The Painlevé Property, One Century Later, CRM Series in Mathematical Physics, Springer, New York, 1999, pp. 35-76

[11] J. Malmquist Sur les équations différentielles du second ordre dont l'intégrale générale a ses points critiques fixes, Ark. Mat. Astron. Fys., Volume 17 (1922/1923), pp. 1-89

[12] K. Okamoto Polynomial Hamiltonians associated with Painlevé equations, II. Differential equations satisfied by polynomial Hamiltonians, Proc. Jpn. Acad., Ser. A, Volume 56 (1980), pp. 367-371

[13] P. Painlevé Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sci. Paris, Ser. I, Volume 143 (1906), pp. 1111-1117

[14] L. Schlesinger Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. Reine Angew. Math., Volume 141 (1912), pp. 96-145

[15] B.A. Springborn Bonnet pairs in the 3-sphere, Contemp. Math., Volume 308 (2002), pp. 297-303

Cité par Sources :

Commentaires - Politique