[Propriétés topologiques des ensembles de solutions d'inclusions fonctionnelles partielles d'évolution]
This paper deals with functional evolution inclusions of neutral type in Banach space when the semigroup is compact as well as noncompact. The topological properties of the solution set is investigated. It is shown that the solution set is nonempty, compact and an
Cette Note traite des inclusions fonctionnelles d'évolution de type neutre dans les espaces de Banach, aussi bien lorsque le semi-groupe est compact que lorsqu'il est non compact. Nous étudions les propriétés topologiques de l'ensemble des solutions. Nous montrons que cet ensemble est non vide, compact, et qu'il est un
Accepté le :
Publié le :
Yong Zhou 1, 2 ; Li Peng 1
@article{CRMATH_2017__355_1_45_0, author = {Yong Zhou and Li Peng}, title = {Topological properties of solution sets for partial functional evolution inclusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--64}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.011}, language = {en}, }
Yong Zhou; Li Peng. Topological properties of solution sets for partial functional evolution inclusions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 45-64. doi : 10.1016/j.crma.2016.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.011/
[1] Topological structure of solution sets to multi-valued asymptotic problems, Z. Anal. Anwend., Volume 19 (2000), pp. 35-60
[2] Topological structure of solution sets to asymptotic boundary value problems, J. Differ. Equ., Volume 248 (2010), pp. 127-150
[3] Le correspondant topologique de l'unicité dans la théorie des équations différentielles, Ann. Math. (2), Volume 43 (1942) no. 4, pp. 730-738
[4] Topological structure of solution sets to differential problems in Fréchet spaces, Ann. Pol. Math., Volume 95 (2009), pp. 17-36
[5] Advanced Functional Evolution Equations and Inclusions, Springer, 2015
[6] Multi-valued perturbations of m-accretive differential inclusions, Isr. J. Math., Volume 108 (1998), pp. 109-138
[7] Classical solutions to differential inclusions with totally disconnected right-hand side, J. Differ. Equ., Volume 246 (2009), pp. 629-640
[8] Nonlinear evolution inclusions: topological characterizations of solution sets and applications, J. Funct. Anal., Volume 265 (2013), pp. 2039-2073
[9] Multivalued Differential Equations, de Gruyter, Berlin, 1992
[10] Weak compactness in
[11] Discrete approximations, relaxation, and optimization of one-sided Lipschitzian differential inclusions in Hilbert spaces, J. Differ. Equ., Volume 243 (2007), pp. 301-328
[12] Structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl., Volume 19 (2012), pp. 609-627
[13] Erratum to: structure of the solution set to impulsive functional differential inclusions on the half-line, Nonlinear Differ. Equ. Appl., Volume 22 (2015), pp. 175-183
[14] On existence of solutions to differential equations or inclusions remaining in a prescribed closed subset of a finite-dimensional space, J. Differ. Equ., Volume 185 (2002), pp. 483-512
[15] On the topological regularity of the solution set of differential inclusions with constraints, J. Differ. Equ., Volume 107 (1994), pp. 280-289
[16] Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, New York, 2001
[17] Existence results for semilinear neutral functional differential inclusions via analytic semigroups, Acta Appl. Math., Volume 98 (2007), pp. 223-253
[18] Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983
[19] On the solution sets to nonconvex differential inclusions of evolution type, Discrete Contin. Dyn. Syst., Volume 2 (1998), pp. 244-252
[20] On the solution sets to differential inclusions on unbounded interval, Proc. Edinb. Math. Soc., Volume 43 (2000), pp. 475-484
[21] Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, Longman and John Wiley & Sons, 1995
[22] Topological theory of non-autonomous parabolic evolution inclusions on a noncompact interval and applications, Math. Ann., Volume 362 (2014), pp. 173-203
[23] Theory and Applications of Partial Functional Differential Equations, vol. 119, Springer Science & Business Media, 2012
- Topological structure of the solution sets to non-autonomous evolution inclusions driven by measures on the half-line, Demonstratio Mathematica, Volume 57 (2024), p. 23 (Id/No 20240038) | DOI:10.1515/dema-2024-0038 | Zbl:7899344
- Topological structure of the solution sets to neutral evolution inclusions driven by measures, Demonstratio Mathematica, Volume 57 (2024), p. 29 (Id/No 20240037) | DOI:10.1515/dema-2024-0037 | Zbl:7930199
- Topological Properties of Solution Sets for τ-Fractional Non-Instantaneous Impulsive Semi-Linear Differential Inclusions with Infinite Delay, Fractal and Fractional, Volume 7 (2023) no. 7, p. 545 | DOI:10.3390/fractalfract7070545
- , 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021, Volume 2516 (2022), p. 130006 | DOI:10.1063/5.0108440
- Structure of the solution set to fractional differential inclusions with impulses at variable times on compact interval, Qualitative Theory of Dynamical Systems, Volume 20 (2021) no. 3, p. 25 (Id/No 59) | DOI:10.1007/s12346-021-00500-x | Zbl:1493.34034
- Approximate controllability of impulsive fractional integro-differential equation with state-dependent delay in Hilbert spaces, IMA Journal of Mathematical Control and Information, Volume 36 (2019) no. 2, p. 603 | DOI:10.1093/imamci/dnx060
- Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions, Journal of King Saud University - Science, Volume 31 (2019) no. 2, p. 184 | DOI:10.1016/j.jksus.2017.09.020
- Topological structure of solution sets for fractional evolution inclusions of Sobolev type, Boundary Value Problems, Volume 2018 (2018), p. 13 (Id/No 171) | DOI:10.1186/s13661-018-1094-8 | Zbl:1499.34330
- Topological properties of
-solution set for impulsive evolution inclusions, Boundary Value Problems, Volume 2018 (2018), p. 28 (Id/No 182) | DOI:10.1186/s13661-018-1099-3 | Zbl:1499.34329 - Topological properties of solution sets for stochastic evolution inclusions, Stochastic Analysis and Applications, Volume 36 (2018) no. 1, pp. 114-137 | DOI:10.1080/07362994.2017.1374191 | Zbl:1391.34104
- Topological properties of solution sets of fractional stochastic evolution inclusions, Advances in Difference Equations, Volume 2017 (2017), p. 20 (Id/No 90) | DOI:10.1186/s13662-017-1142-1 | Zbl:1422.34184
- Energy methods for fractional Navier-Stokes equations, Chaos, Solitons and Fractals, Volume 102 (2017), pp. 78-85 | DOI:10.1016/j.chaos.2017.03.053 | Zbl:1374.35432
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier