[Les solutions d'un système de chimiotaxie à deux espèces, complètement parabolique, sont bornées]
Cette Note étudie les systèmes de chimiotaxie à deux espèces du type
This paper is concerned with the two-species chemotaxis system
Accepté le :
Publié le :
Myo Win Htwe 1 ; Yifu Wang 1
@article{CRMATH_2017__355_1_80_0, author = {Myo Win Htwe and Yifu Wang}, title = {Boundedness in a full parabolic two-species chemotaxis system}, journal = {Comptes Rendus. Math\'ematique}, pages = {80--83}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.10.024}, language = {en}, }
Myo Win Htwe; Yifu Wang. Boundedness in a full parabolic two-species chemotaxis system. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 80-83. doi : 10.1016/j.crma.2016.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.024/
[1] Orientation of cells migrating in a chemotactic gradient, Biological Growth and Spread, Lecture Notes in Biomathematics, vol. 38, Springer-Verlag, New York, 1980, pp. 353-366
[2] Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., Volume 65 (2016), pp. 553-583
[3] On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., Volume 81 (2016), pp. 860-876
[4] From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165
[5] Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., Volume 21 (2011), pp. 231-270
[6] Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005) no. 1, pp. 52-107
[7] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[8] Global bounded solutions and their asymptotic properties under small initial data condition in a two-dimensional chemotaxis system for two species, J. Math. Anal. Appl., Volume 429 (2015), pp. 1291-1304
[9] Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., Volume 38 (2015), pp. 5085-5096
[10] Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differ. Equ., Volume 261 (2016), pp. 2650-2669
[11] On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., Volume 46 (2014), pp. 3761-3781
[12] Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differ. Equ., Volume 258 (2015), pp. 1592-1617
[13] Competitive exclusion in a two species chemotaxis model, J. Math. Biol., Volume 68 (2014), pp. 1607-1626
[14] Stabilization in a two-species chemotaxis system with logistic source, Nonlinearity, Volume 25 (2012), pp. 1413-1425
[15] Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537
[16] Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673
[17] Finite-times blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767
[18] Multi-components chemotactic system in absence of conflicts, Eur. J. Appl. Math., Volume 13 (2002), pp. 641-661
[19] Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., Volume 66 (2015), pp. 83-93
Cité par Sources :
Commentaires - Politique