Comptes Rendus
Partial differential equations
Boundedness in a full parabolic two-species chemotaxis system
[Les solutions d'un système de chimiotaxie à deux espèces, complètement parabolique, sont bornées]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 80-83.

Cette Note étudie les systèmes de chimiotaxie à deux espèces du type

{ut=u(uχ1(w)w)+μ1u(1ua1v),xΩ,t>0,vt=v(vχ2(w)w)+μ2v(1a2uv),xΩ,t>0,wt=dΔww+u+v,xΩ,t>0
où Ω est un domaine borné de Rn avec n1, d>0, μi0, i=1,2, sont des paramètres et χi, i=1,2, sont des fonctions satisfaisant certaines conditions. Notre propos est de montrer que, sous des conditions plus faibles que celles faites jusqu'à présent dans la littérature, les solutions d'un tel système sont globalement bornées.

This paper is concerned with the two-species chemotaxis system

{ut=u(uχ1(w)w)+μ1u(1ua1v),xΩ,t>0,vt=v(vχ2(w)w)+μ2v(1a2uv),xΩ,t>0,wt=dΔww+u+v,xΩ,t>0
in a bounded smooth domain ΩRn(n1), where d>0,μi0 and ai0 (i=1,2) are parameters, χi are functions satisfying some conditions. The purpose of this paper is to show the global boundedness of solutions to the above system under weaker conditions than those assumed in the related literature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.10.024

Myo Win Htwe 1 ; Yifu Wang 1

1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, PR China
@article{CRMATH_2017__355_1_80_0,
     author = {Myo Win Htwe and Yifu Wang},
     title = {Boundedness in a full parabolic two-species chemotaxis system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {80--83},
     publisher = {Elsevier},
     volume = {355},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crma.2016.10.024},
     language = {en},
}
TY  - JOUR
AU  - Myo Win Htwe
AU  - Yifu Wang
TI  - Boundedness in a full parabolic two-species chemotaxis system
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 80
EP  - 83
VL  - 355
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2016.10.024
LA  - en
ID  - CRMATH_2017__355_1_80_0
ER  - 
%0 Journal Article
%A Myo Win Htwe
%A Yifu Wang
%T Boundedness in a full parabolic two-species chemotaxis system
%J Comptes Rendus. Mathématique
%D 2017
%P 80-83
%V 355
%N 1
%I Elsevier
%R 10.1016/j.crma.2016.10.024
%G en
%F CRMATH_2017__355_1_80_0
Myo Win Htwe; Yifu Wang. Boundedness in a full parabolic two-species chemotaxis system. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 80-83. doi : 10.1016/j.crma.2016.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.024/

[1] W. Alt Orientation of cells migrating in a chemotactic gradient, Biological Growth and Spread, Lecture Notes in Biomathematics, vol. 38, Springer-Verlag, New York, 1980, pp. 353-366

[2] X. Bai; M. Winkler Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., Volume 65 (2016), pp. 553-583

[3] T. Black; J. Lankeit; M. Mizukam On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., Volume 81 (2016), pp. 860-876

[4] D. Horstmann From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165

[5] D. Horstmann Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., Volume 21 (2011), pp. 231-270

[6] D. Horstmann; M. Winkler Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005) no. 1, pp. 52-107

[7] E.F. Keller; L.A. Segel Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415

[8] Y. Li Global bounded solutions and their asymptotic properties under small initial data condition in a two-dimensional chemotaxis system for two species, J. Math. Anal. Appl., Volume 429 (2015), pp. 1291-1304

[9] K. Lin; C. Mu; L. Wang Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., Volume 38 (2015), pp. 5085-5096

[10] M. Mizukami; T. Yokota Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differ. Equ., Volume 261 (2016), pp. 2650-2669

[11] M. Negreanu; J.I. Tello On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., Volume 46 (2014), pp. 3761-3781

[12] M. Negreanu; J.I. Tello Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differ. Equ., Volume 258 (2015), pp. 1592-1617

[13] C. Stinner; J.I. Tello; M. Winkler Competitive exclusion in a two species chemotaxis model, J. Math. Biol., Volume 68 (2014), pp. 1607-1626

[14] J.I. Tello; M. Winkler Stabilization in a two-species chemotaxis system with logistic source, Nonlinearity, Volume 25 (2012), pp. 1413-1425

[15] M. Winkler Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537

[16] M. Winkler Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673

[17] M. Winkler Finite-times blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767

[18] G. Wolansky Multi-components chemotactic system in absence of conflicts, Eur. J. Appl. Math., Volume 13 (2002), pp. 641-661

[19] Q. Zhang; Y. Li Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., Volume 66 (2015), pp. 83-93

Cité par Sources :

Commentaires - Politique