Comptes Rendus
Harmonic analysis/Theory of signals
Lattice sub-tilings and frames in LCA groups
[Sous-pavages en réseau et trames dans les groupes abéliens, localement compacts]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 193-199.

Soit Λ un réseau. On prouve que les caractères de G associés au réseau dual forment une trame de L2(Ω) si et seulement si les différents translatés de Ω par Λ sont d'intersection presque vide. Ceci entraîne le théorème bien connu de Fuglede pour les réseaux, ainsi qu'une caractérisation simple des trames de modulation.

Given a lattice Λ in a locally compact Abelian group G and a measurable subset Ω with finite and positive measure, then the set of characters associated with the dual lattice form a frame for L2(Ω) if and only if the distinct translates by Λ of Ω have almost empty intersections. Some consequences of this results are the well-known Fuglede theorem for lattices, as well as a simple characterization for frames of modulates.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.11.017

Davide Barbieri 1 ; Eugenio Hernández 1 ; Azita Mayeli 2

1 Universidad Autónoma de Madrid, 28049 Madrid, Spain
2 City University of New York, Queensborough and the Graduate Center, New York, USA
@article{CRMATH_2017__355_2_193_0,
     author = {Davide Barbieri and Eugenio Hern\'andez and Azita Mayeli},
     title = {Lattice sub-tilings and frames in {LCA} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {193--199},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2016.11.017},
     language = {en},
}
TY  - JOUR
AU  - Davide Barbieri
AU  - Eugenio Hernández
AU  - Azita Mayeli
TI  - Lattice sub-tilings and frames in LCA groups
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 193
EP  - 199
VL  - 355
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2016.11.017
LA  - en
ID  - CRMATH_2017__355_2_193_0
ER  - 
%0 Journal Article
%A Davide Barbieri
%A Eugenio Hernández
%A Azita Mayeli
%T Lattice sub-tilings and frames in LCA groups
%J Comptes Rendus. Mathématique
%D 2017
%P 193-199
%V 355
%N 2
%I Elsevier
%R 10.1016/j.crma.2016.11.017
%G en
%F CRMATH_2017__355_2_193_0
Davide Barbieri; Eugenio Hernández; Azita Mayeli. Lattice sub-tilings and frames in LCA groups. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 193-199. doi : 10.1016/j.crma.2016.11.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.017/

[1] E. Agora; J. Antezana; C. Cabrelli Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Adv. Math., Volume 285 (2015), pp. 454-477

[2] C. Aten et al. Tiling sets and spectral sets over finite fields (preprint) | arXiv

[3] B. Farkas; M. Matolcsi; P. Móra On Fuglede's conjecture and the existence of universal spectra, J. Fourier Anal. Appl., Volume 12 (2006), pp. 483-494

[4] B. Farkas; S. Revesz Tiles with no spectra in dimension 4, Math. Scand., Volume 98 (2006), pp. 44-52

[5] J. Feldman; F.P. Greenleaf Existence of Borel transversals in groups, Pac. J. Math., Volume 25 (1968), pp. 455-461

[6] B. Fuglede Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., Volume 16 (1974), pp. 101-121

[7] E. Hernández; H. Sikic; G. Weiss; E. Wilson Cyclic subspaces for unitary representation of LCA groups: generalized Zak transforms, Colloq. Math., Volume 118 (2010), pp. 313-332

[8] A. Iosevich Fuglede conjecture for lattices www.math.rochester.edu/people/faculty/iosevich/expository/FugledeLattice.pdf (preprint available at)

[9] A. Iosevich; N. Katz; T. Tao The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett., Volume 10 (2003) no. 5–6, pp. 559-569

[10] A. Iosevich; A. Mayeli; J. Pakianathan The Fuglede conjecture holds in Zp×Zp, Anal. PDE (2016) (in press)

[11] A. Iosevich; S. Pedersen Spectral and tiling properties of the unit cube, Int. Math. Res. Not. IMRN, Volume 1998 (1998) no. 16, pp. 819-828

[12] M. Kolountzakis; I. Laba Tiling and spectral properties of near-cubic domains, Stud. Math., Volume 160 (2004) no. 3, pp. 287-299

[13] M. Kolountzakis; M. Matolcsi Tiles with no spectra, Forum Math., Volume 18 (2006), pp. 519-528

[14] S. Konyagin; I. Laba Spectra of certain types of polynomials and tiling of integers with translates of finite sets, J. Number Theory, Volume 103 (2003) no. 2, pp. 267-280

[15] I. Laba Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2965-2972

[16] I. Laba The spectral set conjecture and multiplicative properties of roots of polynomials, J. Lond. Math. Soc., Volume 65 (2002), pp. 661-671

[17] J. Lagarias; J. Reed; Y. Wang Orthonormal bases of exponentials for the n-cube, Duke Math. J., Volume 103 (2000), pp. 25-37

[18] S. Pedersen Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal., Volume 73 (1987), pp. 122-134

[19] L.S. Pontryagin Topological Groups, Princeton University Press, 1946 (translated from Russian)

[20] H. Reiter; J.D. Stegeman Classical Harmonic Analysis on Locally Compact Groups, Clarendon Press, Oxford, UK, 2000

[21] W. Rudin Fourier Analysis on Groups, John Wiley & Sons, 1990

[22] T. Tao Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett., Volume 11 (2004), pp. 251-258

Cité par Sources :

Commentaires - Politique