[Sous-pavages en réseau et trames dans les groupes abéliens, localement compacts]
Soit Λ un réseau. On prouve que les caractères de G associés au réseau dual forment une trame de si et seulement si les différents translatés de Ω par Λ sont d'intersection presque vide. Ceci entraîne le théorème bien connu de Fuglede pour les réseaux, ainsi qu'une caractérisation simple des trames de modulation.
Given a lattice Λ in a locally compact Abelian group G and a measurable subset Ω with finite and positive measure, then the set of characters associated with the dual lattice form a frame for if and only if the distinct translates by Λ of Ω have almost empty intersections. Some consequences of this results are the well-known Fuglede theorem for lattices, as well as a simple characterization for frames of modulates.
Accepté le :
Publié le :
Davide Barbieri 1 ; Eugenio Hernández 1 ; Azita Mayeli 2
@article{CRMATH_2017__355_2_193_0, author = {Davide Barbieri and Eugenio Hern\'andez and Azita Mayeli}, title = {Lattice sub-tilings and frames in {LCA} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {193--199}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.11.017}, language = {en}, }
Davide Barbieri; Eugenio Hernández; Azita Mayeli. Lattice sub-tilings and frames in LCA groups. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 193-199. doi : 10.1016/j.crma.2016.11.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.017/
[1] Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Adv. Math., Volume 285 (2015), pp. 454-477
[2] et al. Tiling sets and spectral sets over finite fields (preprint) | arXiv
[3] On Fuglede's conjecture and the existence of universal spectra, J. Fourier Anal. Appl., Volume 12 (2006), pp. 483-494
[4] Tiles with no spectra in dimension 4, Math. Scand., Volume 98 (2006), pp. 44-52
[5] Existence of Borel transversals in groups, Pac. J. Math., Volume 25 (1968), pp. 455-461
[6] Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., Volume 16 (1974), pp. 101-121
[7] Cyclic subspaces for unitary representation of LCA groups: generalized Zak transforms, Colloq. Math., Volume 118 (2010), pp. 313-332
[8] Fuglede conjecture for lattices www.math.rochester.edu/people/faculty/iosevich/expository/FugledeLattice.pdf (preprint available at)
[9] The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett., Volume 10 (2003) no. 5–6, pp. 559-569
[10] The Fuglede conjecture holds in , Anal. PDE (2016) (in press)
[11] Spectral and tiling properties of the unit cube, Int. Math. Res. Not. IMRN, Volume 1998 (1998) no. 16, pp. 819-828
[12] Tiling and spectral properties of near-cubic domains, Stud. Math., Volume 160 (2004) no. 3, pp. 287-299
[13] Tiles with no spectra, Forum Math., Volume 18 (2006), pp. 519-528
[14] Spectra of certain types of polynomials and tiling of integers with translates of finite sets, J. Number Theory, Volume 103 (2003) no. 2, pp. 267-280
[15] Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2965-2972
[16] The spectral set conjecture and multiplicative properties of roots of polynomials, J. Lond. Math. Soc., Volume 65 (2002), pp. 661-671
[17] Orthonormal bases of exponentials for the n-cube, Duke Math. J., Volume 103 (2000), pp. 25-37
[18] Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal., Volume 73 (1987), pp. 122-134
[19] Topological Groups, Princeton University Press, 1946 (translated from Russian)
[20] Classical Harmonic Analysis on Locally Compact Groups, Clarendon Press, Oxford, UK, 2000
[21] Fourier Analysis on Groups, John Wiley & Sons, 1990
[22] Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett., Volume 11 (2004), pp. 251-258
Cité par Sources :
Commentaires - Politique