[Méthode de Hamilton–Jacobi pour décrire des équilibres évolutifs dans les environnements hétérogènes avec des mutations non évanescentes]
In this note, we characterize the solution to a system of elliptic integro-differential equations describing a phenotypically structured population subject to mutation, selection, and migration. Generalizing an approach based on the Hamilton–Jacobi equations, we identify the dominant terms of the solution when the mutation term is small (but nonzero). This method was initially used, for different problems arisen from evolutionary biology, to identify the asymptotic solutions, while the mutations vanish, as a sum of Dirac masses. A key point is a uniqueness property related to the weak KAM theory. This method allows us to go further than the Gaussian approximation commonly used by biologists, and is an attempt to fill the gap between the theories of adaptive dynamics and quantitative genetics.
Dans cette note, nous étudions un système d'équations intégro-différentielles elliptiques, décrivant une population structurée par trait phénotypique soumise à des mutations, à la sélection et à des migrations. Nous généralisons une approche basée sur des équations de Hamilton–Jacobi pour détérminer les termes dominants de la solution lorsque les effets des mutations sont petits (mais non nuls). Cette méthode était initialement utilisée, pour différents problèmes venant de la biologie évolutive, pour identifier les solutions asymptotiques, lorsque les effets des mutations tendent vers 0, sous forme de sommes de masses de Dirac. Un point-clé est une propriété d'unicité en rapport avec la théorie de KAM faible. Cette méthode nous permet d'aller au-delà des approximations gaussiennes habituellement utilisées par les biologistes, et contribue ainsi à relier les théories de la dynamique adaptative et de la génétique quantitative.
Accepté le :
Publié le :
Sylvain Gandon 1 ; Sepideh Mirrahimi 2
@article{CRMATH_2017__355_2_155_0, author = {Sylvain Gandon and Sepideh Mirrahimi}, title = {A {Hamilton{\textendash}Jacobi} method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations}, journal = {Comptes Rendus. Math\'ematique}, pages = {155--160}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.12.001}, language = {en}, }
TY - JOUR AU - Sylvain Gandon AU - Sepideh Mirrahimi TI - A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations JO - Comptes Rendus. Mathématique PY - 2017 SP - 155 EP - 160 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2016.12.001 LA - en ID - CRMATH_2017__355_2_155_0 ER -
%0 Journal Article %A Sylvain Gandon %A Sepideh Mirrahimi %T A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations %J Comptes Rendus. Mathématique %D 2017 %P 155-160 %V 355 %N 2 %I Elsevier %R 10.1016/j.crma.2016.12.001 %G en %F CRMATH_2017__355_2_155_0
Sylvain Gandon; Sepideh Mirrahimi. A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 155-160. doi : 10.1016/j.crma.2016.12.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.001/
[1] Action potential and weak KAM solutions, Calc. Var. Partial Differ. Equ., Volume 13 (2001) no. 4, pp. 427-458
[2] Competition and the effect of spatial resource heterogeneity on evolutionary diversification, Amer. Nat., Volume 155 (2000) no. 6, pp. 790-803
[3] Quantifying the effects of migration and mutation on adaptation and demography in spatially heterogeneous environments, J. Evol. Biol., Volume 26 (2013), pp. 1185-1202
[4] The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach, Theor. Popul. Biol., Volume 67 (2005) no. 4, pp. 257-271
[5] A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., Volume 38 (1989) no. 1, pp. 141-172
[6] C. Fabre, S. Méléard, E. Porcher, C. Teplitsky, A. Robert, Evolution of a structured population in a heterogeneous environment, preprint.
[7] Weak Kam Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, vol. 88, Cambridge University Press, Cambridge, UK, 2016
[8] Geometric optics approach to reaction–diffusion equations, SIAM J. Appl. Math., Volume 46 (1986), pp. 222-232
[9] Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests, Evolution, Volume 55 (2001) no. 3, pp. 459-466
[10] Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Mathematics, vol. 69, Pitman Advanced Publishing Program, Boston, MA, USA, 1982
[11] Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation, J. Biol. Syst., Volume 5 (1997) no. 02, pp. 265-284
[12] S. Mirrahimi, A Hamilton–Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments, forthcoming.
[13] Concentration Phenomena in PDEs from Biology, Université Pierre-et-Marie-Curie, Paris-6, 2011 (PhD thesis)
[14] Migration and adaptation of a population between patches, Discrete Contin. Dyn. Syst., Ser. B, Volume 18 (2013) no. 3, pp. 753-768
[15] S. Mirrahimi, S. Gandon, The equilibrium between selection, mutation and migration in spatially heterogeneous environments, forthcoming.
[16] Uniqueness in a class of Hamilton–Jacobi equations with constraints, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 489-494
[17] Dirac concentrations in Lotka–Volterra parabolic PDEs, Indiana Univ. Math. J., Volume 57 (2008) no. 7, pp. 3275-3301
[18] Evolutionary Theory: Mathematical and Conceptual Foundations, Sinauer Associates, Inc., 2004
[19] When sources become sinks: migration meltdown in heterogeneous habitats, Evolution, Volume 55 (2001) no. 8, pp. 1520-1531
[20] Predicting adaptation under migration load: the role of genetic skew, Evolution, Volume 63 (2009) no. 11, pp. 2926-2938
- Hamilton-Jacobi Reachability in Reinforcement Learning: A Survey, IEEE Open Journal of Control Systems, Volume 3 (2024), p. 310 | DOI:10.1109/ojcsys.2024.3449138
- Dispersal evolution and eco-evolutionary dynamics in antagonistic species interactions, Trends in Ecology Evolution, Volume 39 (2024) no. 7, p. 666 | DOI:10.1016/j.tree.2024.03.006
- Adaptation of an asexual population with environmental changes, Mathematical Modelling of Natural Phenomena, Volume 18 (2023), p. 21 (Id/No 20) | DOI:10.1051/mmnp/2023024 | Zbl:1558.35286
- Large deviations of a forced velocity-jump process with a Hamilton-Jacobi approach, Annales de l'Institut Fourier, Volume 71 (2021) no. 4, pp. 1733-1755 | DOI:10.5802/aif.3433 | Zbl:1492.35346
- Adaptation in a heterogeneous environment I: persistence versus extinction, Journal of Mathematical Biology, Volume 83 (2021) no. 2, p. 42 (Id/No 14) | DOI:10.1007/s00285-021-01637-8 | Zbl:1473.35598
- Evolution of Specialization in Heterogeneous Environments: Equilibrium Between Selection, Mutation and Migration, Genetics, Volume 214 (2020) no. 2, p. 479 | DOI:10.1534/genetics.119.302868
- Dynamics of adaptation in an anisotropic phenotype-fitness landscape, Nonlinear Analysis. Real World Applications, Volume 54 (2020), p. 33 (Id/No 103107) | DOI:10.1016/j.nonrwa.2020.103107 | Zbl:1437.35670
- Adaptation in general temporally changing environments, SIAM Journal on Applied Mathematics, Volume 80 (2020) no. 6, pp. 2420-2447 | DOI:10.1137/20m1322893 | Zbl:1454.35400
- Dirac-concentrations in an integro-PDE model from evolutionary game theory, Discrete and Continuous Dynamical Systems. Series B, Volume 24 (2019) no. 2, pp. 737-754 | DOI:10.3934/dcdsb.2018205 | Zbl:1404.35242
- Asymptotic analysis of a quantitative genetics model with nonlinear integral operator, Journal de l'École Polytechnique – Mathématiques, Volume 6 (2019), pp. 537-579 | DOI:10.5802/jep.100 | Zbl:1420.35167
- Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, pp. 5537-5568 | DOI:10.1137/18m1175185 | Zbl:1491.35272
- A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 355 (2017) no. 2, pp. 155-160 | DOI:10.1016/j.crma.2016.12.001 | Zbl:1366.92104
- A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments, M
AS. Mathematical Models Methods in Applied Sciences, Volume 27 (2017) no. 13, pp. 2425-2460 | DOI:10.1142/s0218202517500488 | Zbl:1383.35108
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique