On considère le modèle de coque non linéairement élastique « peu profonde » proposé par L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov et W.T. Koiter. On montre que les champs de tenseurs, linéarisés de changement de courbure et non linéaire des déformations, apparaissant dans l'énergie de ce modèle peuvent être pris comme les seules inconnues du problème, au lieu du champ des déplacements comme à l'accoutumée. Afin de justifier cette « approche intrinsèque » de ce modèle non linéaire de coques, on identifie des conditions de compatibilité non linéaires que ces nouvelles inconnues doivent satisfaire. Ces conditions sont du type de Donati, au sens qu'elles se présentent sous la forme de relations intégrales d'orthogonalité à des champs de tenseurs à divergence nulle.
We consider the model of a nonlinearly elastic “shallow” shell proposed by L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov, and W.T. Koiter. We show that the linearized change of curvature and nonlinear strain tensor fields appearing in the energy of this model can be taken as the sole unknowns of the problem, instead of the displacement field as is customary. In order to justify this “intrinsic approach” to this nonlinear model, we identify nonlinear compatibility conditions that these new unknowns must satisfy. These conditions are of Donati type, in the sense that they take the form of integral orthogonality relations against divergence-free tensor fields.
Accepté le :
Publié le :
Philippe G. Ciarlet 1 ; Oana Iosifescu 2
@article{CRMATH_2017__355_2_232_0, author = {Philippe G. Ciarlet and Oana Iosifescu}, title = {Une approche intrins\`eque d'un mod\`ele non lin\'eaire de la th\'eorie des coques}, journal = {Comptes Rendus. Math\'ematique}, pages = {232--242}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2017.01.001}, language = {fr}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Oana Iosifescu TI - Une approche intrinsèque d'un modèle non linéaire de la théorie des coques JO - Comptes Rendus. Mathématique PY - 2017 SP - 232 EP - 242 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2017.01.001 LA - fr ID - CRMATH_2017__355_2_232_0 ER -
Philippe G. Ciarlet; Oana Iosifescu. Une approche intrinsèque d'un modèle non linéaire de la théorie des coques. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 232-242. doi : 10.1016/j.crma.2017.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.001/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35-92
[2] Modèles non linéaires de coques : théorèmes d'existence et de régularité : analyse limite lorsque la coque devient une plaque, Université Pierre-et-Marie-Curie, Paris, 1995 (Doctoral Dissertation)
[3] Existence et régularité de la solution du modèle bidimensionnel non linéaire de coque faiblement courbée de W.T. Koiter, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 1269-1274
[4] On the characterization of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132
[5] An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl., Volume 60 (1981), pp. 285-308
[6] The intrinsic theory of thin shells and plates – part I: general theory, Q. Appl. Math., Volume 1 (1944), pp. 297-327
[7] The intrinsic theory of thin shells and plates – part II: application to thin plates, Q. Appl. Math., Volume 2 (1944), pp. 43-59
[8] The intrinsic theory of thin shells and plates – part III: application to thin shells, Q. Appl. Math., Volume 2 (1944), pp. 120-135
[9] Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271
[10] Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates, J. Math. Pures Appl., Volume 103 (2015), pp. 255-268
[11] Saint Venant compatibility equations on a surface – application to intrinsic shell theory, Math. Models Methods Appl. Sci., Volume 18 (2008), pp. 165-194
[12] Donati compatibility conditions on a surface – application to shell theory, J. Math. Pures Appl., Volume 102 (2014), pp. 173-202
[13] Nonlinear Donati compatibility conditions on a surface – application to the intrinsic approach for Koiter's model of a nonlinearly elastic shallow shell, Math. Models Methods Appl. Sci. (2017) (in press) | DOI
[14] Intrinsic formulation of the displacement–traction problem in linearized elasticity, Math. Models Methods Appl. Sci., Volume 24 (2014), pp. 1197-1216
[15] Donati compatibility conditions for membrane and flexural shells, Anal. Appl., Volume 13 (2015), pp. 685-705
[16] Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates, Math. Models Methods Appl. Sci., Volume 23 (2013), pp. 2293-2321
[17] Direct Methods in the Calculus of Variations, Springer, Berlin, 2010 (first edition: 1989)
[18] Stability of Thin-Walled Tubes Under Torsion, 1933 (NACA Report TN 479)
[19] Local existence and regularity of the solutions of the nonlinear thin shell model of Donnell–Mushtari–Vlasov, Appl. Anal., Volume 36 (1990), pp. 221-234
[20] Some remarks on the compatibility conditions in elasticity, Rend. Accad. Naz. Sci. Detta Accad. XL, Parte I, Mem. Mat., Volume 29 (2005), pp. 175-181
[21] Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 359-363
[22] Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222
[23] Finite Element Methods for Navier–Stokes Equations, Springer, Berlin, 1986
[24] On the nonlinear theory of thin elastic shells, Proc. Kin. Ned. Akad. Wetensch. B, Volume 69 (1966), pp. 1-54
[25] Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris, 1969
[26] On the analyticity of the solution of linear elliptic systems of partial differential equations, Commun. Pure Appl. Math., Volume 10 (1957), pp. 271-290
[27] Non-Linear Theory of Thin Elastic Shells, Israel Program for Scientific Translation, Jerusalem, 1961 (English translation of Nelineinaya Theoriya Uprugikh Obolochek, Tatknigoizdat, 1957)
[28] The basic differential equations in the general theory of elastic shells, Prikl. Mat. Meh., Volume 8 (1944), pp. 109-140
Cité par Sources :
Commentaires - Politique