Comptes Rendus
Problèmes mathématiques de la mécanique/Équations aux dérivées partielles
Une approche intrinsèque d'un modèle non linéaire de la théorie des coques
Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 232-242.

On considère le modèle de coque non linéairement élastique « peu profonde » proposé par L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov et W.T. Koiter. On montre que les champs de tenseurs, linéarisés de changement de courbure et non linéaire des déformations, apparaissant dans l'énergie de ce modèle peuvent être pris comme les seules inconnues du problème, au lieu du champ des déplacements comme à l'accoutumée. Afin de justifier cette « approche intrinsèque » de ce modèle non linéaire de coques, on identifie des conditions de compatibilité non linéaires que ces nouvelles inconnues doivent satisfaire. Ces conditions sont du type de Donati, au sens qu'elles se présentent sous la forme de relations intégrales d'orthogonalité à des champs de tenseurs à divergence nulle.

We consider the model of a nonlinearly elastic “shallow” shell proposed by L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov, and W.T. Koiter. We show that the linearized change of curvature and nonlinear strain tensor fields appearing in the energy of this model can be taken as the sole unknowns of the problem, instead of the displacement field as is customary. In order to justify this “intrinsic approach” to this nonlinear model, we identify nonlinear compatibility conditions that these new unknowns must satisfy. These conditions are of Donati type, in the sense that they take the form of integral orthogonality relations against divergence-free tensor fields.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.001

Philippe G. Ciarlet 1 ; Oana Iosifescu 2

1 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 Départment de Mathématiques, université de Montpellier, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
@article{CRMATH_2017__355_2_232_0,
     author = {Philippe G. Ciarlet and Oana Iosifescu},
     title = {Une approche intrins\`eque d'un mod\`ele non lin\'eaire de la th\'eorie des coques},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {232--242},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.001},
     language = {fr},
}
TY  - JOUR
AU  - Philippe G. Ciarlet
AU  - Oana Iosifescu
TI  - Une approche intrinsèque d'un modèle non linéaire de la théorie des coques
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 232
EP  - 242
VL  - 355
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2017.01.001
LA  - fr
ID  - CRMATH_2017__355_2_232_0
ER  - 
%0 Journal Article
%A Philippe G. Ciarlet
%A Oana Iosifescu
%T Une approche intrinsèque d'un modèle non linéaire de la théorie des coques
%J Comptes Rendus. Mathématique
%D 2017
%P 232-242
%V 355
%N 2
%I Elsevier
%R 10.1016/j.crma.2017.01.001
%G fr
%F CRMATH_2017__355_2_232_0
Philippe G. Ciarlet; Oana Iosifescu. Une approche intrinsèque d'un modèle non linéaire de la théorie des coques. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 232-242. doi : 10.1016/j.crma.2017.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.001/

[1] S. Agmon; A. Douglis; L. Nirenberg Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35-92

[2] O. Alexandescu-Iosifescu Modèles non linéaires de coques : théorèmes d'existence et de régularité : analyse limite lorsque la coque devient une plaque, Université Pierre-et-Marie-Curie, Paris, 1995 (Doctoral Dissertation)

[3] O. Alexandescu-Iosifescu Existence et régularité de la solution du modèle bidimensionnel non linéaire de coque faiblement courbée de W.T. Koiter, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 1269-1274

[4] C. Amrouche; P.G. Ciarlet; L. Gratie; S. Kesavan On the characterization of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132

[5] M. Bernadou; J.T. Oden An existence theorem for a class of nonlinear shallow shell problems, J. Math. Pures Appl., Volume 60 (1981), pp. 285-308

[6] W.-Z. Chien The intrinsic theory of thin shells and plates – part I: general theory, Q. Appl. Math., Volume 1 (1944), pp. 297-327

[7] W.-Z. Chien The intrinsic theory of thin shells and plates – part II: application to thin plates, Q. Appl. Math., Volume 2 (1944), pp. 43-59

[8] W.-Z. Chien The intrinsic theory of thin shells and plates – part III: application to thin shells, Q. Appl. Math., Volume 2 (1944), pp. 120-135

[9] P.G. Ciarlet; P. Ciarlet Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 259-271

[10] P.G. Ciarlet; G. Geymonat; F. Krasucki Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates, J. Math. Pures Appl., Volume 103 (2015), pp. 255-268

[11] P.G. Ciarlet; L. Gratie; C. Mardare; M. Shen Saint Venant compatibility equations on a surface – application to intrinsic shell theory, Math. Models Methods Appl. Sci., Volume 18 (2008), pp. 165-194

[12] P.G. Ciarlet; O. Iosifescu Donati compatibility conditions on a surface – application to shell theory, J. Math. Pures Appl., Volume 102 (2014), pp. 173-202

[13] P.G. Ciarlet; O. Iosifescu Nonlinear Donati compatibility conditions on a surface – application to the intrinsic approach for Koiter's model of a nonlinearly elastic shallow shell, Math. Models Methods Appl. Sci. (2017) (in press) | DOI

[14] P.G. Ciarlet; C. Mardare Intrinsic formulation of the displacement–traction problem in linearized elasticity, Math. Models Methods Appl. Sci., Volume 24 (2014), pp. 1197-1216

[15] P.G. Ciarlet; C. Mardare; X. Shen Donati compatibility conditions for membrane and flexural shells, Anal. Appl., Volume 13 (2015), pp. 685-705

[16] P.G. Ciarlet; S. Mardare Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates, Math. Models Methods Appl. Sci., Volume 23 (2013), pp. 2293-2321

[17] B. Dacorogna Direct Methods in the Calculus of Variations, Springer, Berlin, 2010 (first edition: 1989)

[18] L.H. Donnell Stability of Thin-Walled Tubes Under Torsion, 1933 (NACA Report TN 479)

[19] I.N. Figueiredo Local existence and regularity of the solutions of the nonlinear thin shell model of Donnell–Mushtari–Vlasov, Appl. Anal., Volume 36 (1990), pp. 221-234

[20] G. Geymonat; F. Krasucki Some remarks on the compatibility conditions in elasticity, Rend. Accad. Naz. Sci. Detta Accad. XL, Parte I, Mem. Mat., Volume 29 (2005), pp. 175-181

[21] G. Geymonat; F. Krasucki Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 359-363

[22] G. Geymonat; P. Suquet Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222

[23] V. Girault; P.A. Raviart Finite Element Methods for Navier–Stokes Equations, Springer, Berlin, 1986

[24] W.T. Koiter On the nonlinear theory of thin elastic shells, Proc. Kin. Ned. Akad. Wetensch. B, Volume 69 (1966), pp. 1-54

[25] J.-L. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris, 1969

[26] C.B. Morrey; L. Nirenberg On the analyticity of the solution of linear elliptic systems of partial differential equations, Commun. Pure Appl. Math., Volume 10 (1957), pp. 271-290

[27] K.M. Mushtari; K.Z. Galimov Non-Linear Theory of Thin Elastic Shells, Israel Program for Scientific Translation, Jerusalem, 1961 (English translation of Nelineinaya Theoriya Uprugikh Obolochek, Tatknigoizdat, 1957)

[28] V.Z. Vlasov The basic differential equations in the general theory of elastic shells, Prikl. Mat. Meh., Volume 8 (1944), pp. 109-140

Cité par Sources :

Commentaires - Politique