[Schémas d'ordre deux en temps pour des flots de gradient dans des espaces métriques géodésiques et de Wasserstein]
La discrétisation temporelle des flots de gradient dans des espaces métriques utilise des variantes du schéma d'Euler implicite issu du travail séminal de Jordan, Kinderlehrer et Otto [9]. Nous proposons dans cette Note une approche différente, permettant de construire deux schémas numériques d'ordre deux en temps. Dans le cadre d'un espace métrique, nous montrons que les schémas sont bien définis et prouvons la convergence de l'un d'entre eux sous des hypothèses de régularité. Pour le cas particulier d'un flot de gradient Fokker–Planck dans l'espace de Wasserstein, nous obtenons (théoriquement et numériquement) la convergence à l'ordre deux.
The time discretization of gradient flows in metric spaces uses variants of the celebrated implicit Euler-type scheme of Jordan, Kinderlehrer, and Otto [9]. We propose in this Note a different approach, which allows us to construct two second-order in time numerical schemes. In a metric space framework, we show that the schemes are well defined and prove the convergence for one of them under some regularity assumptions. For the particular case of a Fokker–Planck gradient flow in the Wasserstein space, we obtain (theoretically and numerically) the second-order convergence.
Accepté le :
Publié le :
Guillaume Legendre 1 ; Gabriel Turinici 1, 2
@article{CRMATH_2017__355_3_345_0, author = {Guillaume Legendre and Gabriel Turinici}, title = {Second-order in time schemes for gradient flows in {Wasserstein} and geodesic metric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--353}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.02.001}, language = {en}, }
TY - JOUR AU - Guillaume Legendre AU - Gabriel Turinici TI - Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces JO - Comptes Rendus. Mathématique PY - 2017 SP - 345 EP - 353 VL - 355 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2017.02.001 LA - en ID - CRMATH_2017__355_3_345_0 ER -
Guillaume Legendre; Gabriel Turinici. Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 345-353. doi : 10.1016/j.crma.2017.02.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.001/
[1] Barycenters in the Wasserstein space, SIAM J. Math. Anal., Volume 43 (2011) no. 2, pp. 904-924
[2] A user's guide to optimal transport, Cetraro, Italy, 2009 (B. Piccoli; M. Rascle, eds.) (Lecture Notes in Mathematics), Springer (2008), pp. 1-155
[3] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, ETH Zürich Birkhäuser, Basel, 2008
[4] Discretization of functionals involving the Monge–Ampère operator, Numer. Math., Volume 134 (2016) no. 3, pp. 611-636
[5] Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 691-721
[6] Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 375-417
[7] A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, 2001
[8] Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8, Springer, 1993
[9] The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal., Volume 29 (1998) no. 1, pp. 1-17
[10] Approximation of parabolic equations using the Wasserstein metric, ESAIM Math. Model. Numer. Anal., Volume 33 (1999) no. 4, pp. 837-852
[11] Discretization of the 3D Monge–Ampere operator, between wide stencils and power diagrams, ESAIM Math. Model. Numer. Anal., Volume 49 (2015) no. 5, pp. 1511-1523
[12] Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007
[13] Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, Progress in Nonlinear Differential Equations and Their Applications, vol. 87, Birkhäuser, 2015
[14] Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338, Springer, 2009
- High order schemes for gradient flow with respect to a metric, Journal of Computational Physics, Volume 494 (2023), p. 112516 | DOI:10.1016/j.jcp.2023.112516
- A new minimizing-movements scheme for curves of maximal slope, ESAIM: Control, Optimisation and Calculus of Variations, Volume 28 (2022), p. 59 | DOI:10.1051/cocv/2022028
- Primal Dual Methods for Wasserstein Gradient Flows, Foundations of Computational Mathematics, Volume 22 (2022) no. 2, p. 389 | DOI:10.1007/s10208-021-09503-1
- Lagrangian schemes for Wasserstein gradient flows, Geometric Partial Differential Equations - Part II, Volume 22 (2021), p. 271 | DOI:10.1016/bs.hna.2020.10.002
- A multi-step Lagrangian scheme for spatially inhomogeneous evolutionary games, Journal of Evolution Equations, Volume 21 (2021) no. 2, p. 2691 | DOI:10.1007/s00028-021-00702-5
- Two Structure-Preserving Time Discretizations for Gradient Flows, Applied Mathematics Optimization, Volume 80 (2019) no. 3, p. 733 | DOI:10.1007/s00245-019-09605-x
- A variational formulation of the BDF2 method for metric gradient flows, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 1, p. 145 | DOI:10.1051/m2an/2018045
- Simulation of multiphase porous media flows with minimising movement and finite volume schemes, European Journal of Applied Mathematics, Volume 30 (2019) no. 6, p. 1123 | DOI:10.1017/s0956792518000633
- Euclidean, metric, and Wasserstein gradient flows: an overview, Bulletin of Mathematical Sciences, Volume 7 (2017) no. 1, p. 87 | DOI:10.1007/s13373-017-0101-1
Cité par 9 documents. Sources : Crossref
Commentaires - Politique