Let M be the Hardy–Littlewood maximal function and b be a locally integrable function. Denote by and the maximal commutator and the (nonlinear) commutator of M with b. In this paper, the author considers the boundedness of and on Lebesgue spaces and Morrey spaces when b belongs to the Lipschitz space, by which some new characterizations of the Lipschitz spaces are given.
Soit M l'opérateur maximal de Hardy–Littlewood et b une fonction localement intégrable. Notons et le commutateur maximal et le commutateur (non linéaire) de M et b. Dans cette Note, l'auteur étudie la finitude de et sur les espaces de Lebesgue et les espaces de Morrey lorsque b appartient à l'espace de Lipschitz. Cela conduit à de nouvelles caractérisations de l'espace de Lipschitz.
Accepted:
Published online:
Pu Zhang 1
@article{CRMATH_2017__355_3_336_0, author = {Pu Zhang}, title = {Characterization of {Lipschitz} spaces via commutators of the {Hardy{\textendash}Littlewood} maximal function}, journal = {Comptes Rendus. Math\'ematique}, pages = {336--344}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.01.022}, language = {en}, }
Pu Zhang. Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 336-344. doi : 10.1016/j.crma.2017.01.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.022/
[1] A note on Riesz potentials, Duke Math. J., Volume 42 (1975), pp. 765-778
[2] Morrey Spaces, Lect. Notes Appl. Numer. Harmon. Anal., Springer International Publishing, Switzerland, 2015
[3] A note on maximal commutators and commutators of maximal functions, J. Math. Soc. Jpn., Volume 67 (2015) no. 2, pp. 581-593
[4] Commutators for the maximal and sharp functions, Proc. Amer. Math. Soc., Volume 128 (2000) no. 11, pp. 3329-3334
[5] On the product of functions in BMO and , Ann. Inst. Fourier, Volume 57 (2007) no. 5, pp. 1405-1439
[6] Factorization theorems for Hardy spaces in several variables, Ann. Math., Volume 103 (1976) no. 2, pp. 611-635
[7] Maximal functions measuring smoothness, Mem. Amer. Math. Soc., Volume 47 (1984) no. 293, pp. 1-115
[8] Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, RI, USA, 2001
[9] Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J., Volume 40 (1991), pp. 1397-1420
[10] Classical Fourier Analysis, Grad. Texts Math., vol. 249, Springer, New York, 2014
[11] Commutators of the Hardy–Littlewood maximal operator with BMO symbols on spaces of homogeneous type, Abstr. Appl. Anal. (2008) (21 pages)
[12] Maximal commutators of BMO functions and singular integral operators with non-smooth kernels on spaces of homogeneous type, J. Math. Anal. Appl., Volume 354 (2009), pp. 249-262
[13] Mean oscillation and commutators of singular integral operators, Ark. Mat., Volume 16 (1978), pp. 263-270
[14] Elementary characterization of the Morrey–Campanato spaces, Lect. Notes Math., Volume 992 (1983), pp. 101-114
[15] Notes on commutators and Morrey spaces, Hokkaido Math. J., Volume 32 (2003), pp. 345-353
[16] Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc., Volume 110 (1990) no. 4, pp. 961-969
[17] On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., Volume 43 (1938), pp. 126-166
[18] Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 1-17
[19] On the theory of spaces, J. Funct. Anal., Volume 4 (1969), pp. 71-87
[20] Vector-valued commutators and applications, Indiana Univ. Math. J., Volume 38 (1989) no. 4, pp. 959-971
[21] Higher order commutators for vector-valued Calderón–Zygmund operators, Trans. Amer. Math. Soc., Volume 336 (1993) no. 2, pp. 537-556
[22] Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces, Hokkaido Math. J., Volume 35 (2006), pp. 683-696
[23] Multiple weighted estimates for commutators of multilinear maximal function, Acta Math. Sin. Engl. Ser., Volume 31 (2015) no. 6, pp. 973-994
[24] Commutators of the fractional maximal functions, Acta Math. Sin., Volume 52 (2009) no. 6, pp. 1235-1238
[25] Commutators of the fractional maximal function on variable exponent Lebesgue spaces, Czechoslov. Math. J., Volume 64 (2014), pp. 183-197
[26] Commutators for the maximal functions on Lebesgue spaces with variable exponent, Math. Inequal. Appl., Volume 17 (2014) no. 4, pp. 1375-1386
Cited by Sources:
☆ Supported by the National Natural Science Foundation of China (Grant Nos. 11571160 and 11471176).
Comments - Policy