[Une démonstration simple du théorème de Lyapunov sur la stabilité en temps fini]
On propose une démonstration simple du théorème de Lyapunov sur la stabilité en temps fini pour des systèmes de Filippov sans utilisation de dérivées généralisées pour dériver la composition d'une fonction de Lyapunov et d'une solution absolument continue.
We offer a simple proof of the Lyapunov finite-time stability theorem for Filippov systems which does not use any generalized derivatives to differentiate the composition of the Lyapunov function with absolutely continuous solutions.
Accepté le :
Publié le :
Oleg Makarenkov 1
@article{CRMATH_2017__355_3_277_0, author = {Oleg Makarenkov}, title = {A simple proof of the {Lyapunov} finite-time stability theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {277--281}, publisher = {Elsevier}, volume = {355}, number = {3}, year = {2017}, doi = {10.1016/j.crma.2017.02.003}, language = {en}, }
Oleg Makarenkov. A simple proof of the Lyapunov finite-time stability theorem. Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, pp. 277-281. doi : 10.1016/j.crma.2017.02.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.003/
[1] Liapunov Functions and Stability in Control Theory, Communications and Control Engineering Series, Springer-Verlag, Berlin, 2005 (xiv+237 pp)
[2] Comparison of hysteresis current controllers using nonsmooth Lyapunov functions, Seville, Spain (2005), pp. 3982-3987
[3] Asymptotic stability and smooth Lyapunov functions, J. Differ. Equ., Volume 149 (1998) no. 1, pp. 69-114
[4] Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), vol. 18, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1988
[5] Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Volume 50 (2003) no. 11, pp. 1421-1435
[6] Semistability theory for differential inclusions with applications to consensus problems in dynamical networks with switching topology, Proceedings of 2008 American Control Conference, IEEE, 2008, pp. 3981-3986
[7] Synchronization problems for unidirectional feedback coupled nonlinear systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 15 (2008) no. 4, pp. 453-468
[8] Finite time stability and robust control synthesis of uncertain switched systems, SIAM J. Control Optim., Volume 43 (2004–2005) no. 4, pp. 1253-1271
[9] A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators, IEEE Trans. Circuits Syst., Volume 34 (1987) no. 1, pp. 73-82
[10] Lyapunov stability theory of nonsmooth systems, IEEE Trans. Autom. Control, Volume 39 (1994) no. 9, pp. 1910-1914
[11] Finite-time stabilisation of cyclic formations using bearing-only measurements, Int. J. Control, Volume 87 (2014) no. 4, pp. 715-727
Cité par Sources :
Commentaires - Politique