[Continuité de Besov des opérateurs pseudo-différentiels sur les groupes de Lie compacts revisitée]
Dans cette note, nous présentons quelques résultats sur l'action des opérateurs pseudo-différentiels globaux sur les espaces de Besov des groupes de Lie compacts.
In this note we present some results on the action of global pseudo-differential operators on Besov spaces on compact Lie groups.
Accepté le :
Publié le :
Duván Cardona 1
@article{CRMATH_2017__355_5_533_0, author = {Duv\'an Cardona}, title = {Besov continuity of pseudo-differential operators on compact {Lie} groups revisited}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--537}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.02.012}, language = {en}, }
Duván Cardona. Besov continuity of pseudo-differential operators on compact Lie groups revisited. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 533-537. doi : 10.1016/j.crma.2017.02.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.012/
[1] Fourier multipliers and group von Neumann algebras, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016), pp. 766-770
[2] Hardy–Littlewood inequalities and Fourier multipliers on SU(2), Stud. Math., Volume 234 (2016), pp. 1-29
[3] -estimates for certain non-regular pseudo-differential operators, Commun. Partial Differ. Equ., Volume 7 (1982), pp. 1023-1033
[4] Besov continuity for multipliers defined on compact Lie groups, Palest. J. Math., Volume 5 (2016) no. 2, pp. 35-44
[5] Littlewood–Paley theorem, Nikolskii inequality, Besov spaces, Fourier and spectral multipliers on graded Lie groups | arXiv
[6] bounds for pseudo-differential operators on the torus, Oper. Theory, Adv. Appl., Volume 231 (2012), pp. 103-116
[7] -bounds for pseudo-differential operators on compact Lie groups, J. Inst. Math. Jussieu (2017) | DOI
[8] -bounds for pseudo-differential operators, Isr. J. Math., Volume 14 (1973), pp. 413-417
[9] Intrinsic pseudo-differential calculi on any compact Lie group, J. Funct. Anal., Volume 268 (2015) no. 11, pp. 3404-3477
[10] Hörmander condition for Fourier multipliers on compact Lie groups | arXiv
[11] Operateurs pseudo-differentiels et espaces de Besov, C. R. Acad. Sci. Paris, Ser. A, Volume 286 (1978), pp. 895-897
[12] Estimates for translation invariant operators in spaces, Acta Math., Volume 104 (1960), pp. 93-140
[13] The Analysis of the Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985
[14] Sur les multiplicateurs des séries de Fourier, Stud. Math., Volume 8 (1939), pp. 78-91
[15] On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.), Volume 109 (1956), pp. 701-703
[16] Nikolskii inequality and functional classes on compact Lie groups, Funct. Anal. Appl., Volume 49 (2015), pp. 226-229
[17] Nikolskii inequality and Besov, Triebel–Lizorkin, Wiener and Beurling spaces on compact homogeneous manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume XVI (2016), pp. 981-1017
[18] Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhäuser-Verlag, Basel, Switzerland, 2010
[19] Sharp Garding inequality on compact Lie groups, J. Funct. Anal., Volume 260 (2011), pp. 2881-2901
[20] Global quantization of pseudo-differential operators on compact Lie groups, SU(2) and 3-sphere, Int. Math. Res. Not. IMRN, Volume 2013 (2013) no. 11, pp. 2439-2496
[21] Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity, J. Fourier Anal. Appl., Volume 20 (2014), pp. 476-499
[22] On multipliers on compact Lie groups, Funct. Anal. Appl., Volume 47 (2013), pp. 72-75
[23] Global functional calculus for operators on compact Lie groups, J. Funct. Anal., Volume 267 (2014) no. 1, pp. 144-172
[24] Fourier multipliers on compact Lie groups, Math. Z., Volume 280 (2015) no. 3–4, pp. 621-642
Cité par Sources :
Commentaires - Politique