In this note, we mainly study the relation between the sign of and in with and for . Given the differential inequality , first we provide several sufficient conditions so that holds. Then we provide conditions such that for all , which is known as the sub poly-harmonic property for u. In the last part of the note, we revisit the super poly-harmonic property for solutions to and with in .
Dans cette Note, nous étudions principalement la relation entre le signe de et dans pour , avec n, . Étant donnée l'inégalité différentielle , nous montrons, dans un premier temps, plusieurs conditions suffisantes afin que l'inégalité soit satisfaite. Puis, sous une hypothèse de croissance, nous montrons que pour tout , c'est-à-dire que u satisfait la propriété de sous-poly-harmonicité. Dans la dernière partie de la Note, nous considérons la sur-poly-harmonicité des solutions de l'équation et , avec , dans .
Accepted:
Published online:
Quốc Anh Ngô 1
@article{CRMATH_2017__355_5_526_0, author = {Quốc Anh Ng\^o}, title = {On the sub poly-harmonic property for solutions to {(\ensuremath{-}\ensuremath{\Delta})\protect\textsuperscript{\protect\emph{p}}\protect\emph{u}\,<\,0} in $ {\mathbb{R}}^{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {526--532}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.003}, language = {en}, }
Quốc Anh Ngô. On the sub poly-harmonic property for solutions to (−Δ)pu < 0 in $ {\mathbb{R}}^{n}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 526-532. doi : 10.1016/j.crma.2017.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.003/
[1] Classification of solutions of some nonlinear elliptic equations, Duke Math. J., Volume 63 (1991), pp. 615-622
[2] Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., Volume 12 (2013), pp. 2497-2514
[3] Classification of solutions for an integral equation, Commun. Pure Appl. Math., Volume 59 (2006), pp. 330-343
[4] Super poly-harmonic property of solutions for Navier boundary problems on a half space, J. Funct. Anal., Volume 265 (2013), pp. 1522-1555
[5] Nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 246 (2009), pp. 216-234
[6] On radial solutions of in with exactly quadratic growth at infinity, Differ. Integral Equ. (2017) (in press) | arXiv
[7] A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., Volume 229 (2012), pp. 2835-2867
[8] Existence and stability properties of entire solutions to the polyharmonic equation for any , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016), pp. 495-528
[9] A note on nonlinear biharmonic equations with negative exponents, J. Differ. Equ., Volume 253 (2012), pp. 3147-3157
[10] Entire solutions and global bifurcations for a biharmonic equation with singular non-linearity in , Adv. Differ. Equ., Volume 13 (2008), pp. 753-780
[11] Remarks on entire solutions for two fourth-order elliptic problems, Proc. Edinb. Math. Soc., Volume 59 (2016), pp. 777-786
[12] Liouville-type theorems for polyharmonic systems in , J. Differ. Equ., Volume 225 (2006), pp. 685-709
[13] Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., Volume 254 (2008), pp. 1058-1087
[14] Classification of solutions to the higher order Liouville's equation on , Math. Z., Volume 263 (2009), pp. 307-329
[15] Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differ. Equ., Volume 37 (2003), pp. 1-13
[16] Classification of solutions of higher order conformally invariant equations, Math. Ann., Volume 313 (1999), pp. 207-228
[17] Uniqueness theorem for the entire positive solutions of biharmonic equations in , Proc. R. Soc. Edinb., Sect. A, Math., Volume 130 (2000), pp. 651-670
[18] Exact solutions of nonlinear conformally invariant integral equations in , Adv. Math., Volume 194 (2005), pp. 485-503
Cited by Sources:
Comments - Policy