[Le problème de Lehmer pour la fonction d'Euler sur Fq[x]]
Dans cette Note, nous considérons l'analogue dans les corps de fonctions du problème de Lehmer sur la fonction d'Euler. Soit
In this paper, we consider the function field analogue of the Lehmer's totient problem. Let
Accepté le :
Publié le :
Qingzhong Ji 1 ; Hourong Qin 1
@article{CRMATH_2017__355_4_370_0, author = {Qingzhong Ji and Hourong Qin}, title = {Lehmer's totient problem over $ {\mathbb{F}}_{q}[x]$}, journal = {Comptes Rendus. Math\'ematique}, pages = {370--377}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.007}, language = {en}, }
Qingzhong Ji; Hourong Qin. Lehmer's totient problem over $ {\mathbb{F}}_{q}[x]$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 370-377. doi : 10.1016/j.crma.2017.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.007/
[1] On the congruence
[2] Composite integers n for which
[3] Factorizations of
[4] On the number of prime factors of n if
[5] On k-Lehmer numbers, Integers, Volume 12 (2012) no. 5, pp. 1081-1089
[6] On Euler's totient function, Bull. Amer. Math. Soc., Volume 38 (1932) no. 10, pp. 745-751
[7] On composite integers n for which
[8] Some series and congruences, Nanjing University, China, 2012 (master's thesis)
[9] A note on Lehmer's totient problem http://www.math.tu-berlin.de/~kant/ants/Poster/Pinch Poster3.pdf (Poster presented in ANTS VII)
[10] On composite integers n for which
[11] Lehmer's totient problem and Carmichael numbers in a PID http://math.arizona.edu/~jschettler/Schettler.pdf
[12] The least prime congruent to one modulo n, Amer. Math. Monthly, Volume 118 (2011) no. 8, pp. 737-742
[13] Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, 1982
[14] Zur Theorie der Potenzreste, Monatshefte Math., Volume 3 (1892) no. 1, pp. 265-284 | DOI
Cité par Sources :
☆ Supported by NSFC (Nos. 11471154, 11271177, 11571163).
Commentaires - Politique