[Le problème de Lehmer pour la fonction d'Euler sur Fq[x]]
Dans cette Note, nous considérons l'analogue dans les corps de fonctions du problème de Lehmer sur la fonction d'Euler. Soit et la fonction d'Euler de sur , où désigne un corps fini à q éléments. Nous montrons que si et seulement si (i) est irréductible, ou (ii) et est le produit de deux polynômes irréductibles non associés de degré 1, ou (iii) et est le produit de tous les polynômes irréductibles de degré 1, ou le produit de tous les polynômes irréductibles de degrés 1 et 2, ou le produit de trois polynômes irréductibles de degrés 1, 2 et 3, respectivement.
In this paper, we consider the function field analogue of the Lehmer's totient problem. Let and be the Euler's totient function of over , where is a finite field with q elements. We prove that if and only if (i) is irreducible; or (ii) , is the product of any 2 non-associate irreducibles of degree 1; or (iii) , is the product of all irreducibles of degree 1, all irreducibles of degree 1 and 2, and the product of any 3 irreducibles one each of degree 1, 2 and 3.
Accepté le :
Publié le :
Qingzhong Ji 1 ; Hourong Qin 1
@article{CRMATH_2017__355_4_370_0, author = {Qingzhong Ji and Hourong Qin}, title = {Lehmer's totient problem over $ {\mathbb{F}}_{q}[x]$}, journal = {Comptes Rendus. Math\'ematique}, pages = {370--377}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.007}, language = {en}, }
Qingzhong Ji; Hourong Qin. Lehmer's totient problem over $ {\mathbb{F}}_{q}[x]$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 370-377. doi : 10.1016/j.crma.2017.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.007/
[1] On the congruence , Integers, Volume 8 (2008) (A59)
[2] Composite integers n for which , Acta Math. Sin. Engl. Ser., Volume 23 (2007) no. 10, pp. 1915-1918
[3] Factorizations of , , 3, 6, 7, 10, 11, 12 up to High Powers, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, USA, 2002
[4] On the number of prime factors of n if , Nieuw Arch. Wiskd., Volume 28 (1980) no. 3, pp. 177-185
[5] On k-Lehmer numbers, Integers, Volume 12 (2012) no. 5, pp. 1081-1089
[6] On Euler's totient function, Bull. Amer. Math. Soc., Volume 38 (1932) no. 10, pp. 745-751
[7] On composite integers n for which , Bol. Soc. Mat. Mexicana, Volume 17 (2011), pp. 13-21
[8] Some series and congruences, Nanjing University, China, 2012 (master's thesis)
[9] A note on Lehmer's totient problem http://www.math.tu-berlin.de/~kant/ants/Poster/Pinch Poster3.pdf (Poster presented in ANTS VII)
[10] On composite integers n for which (II), Pac. J. Math., Volume 69 (1977) no. 1, pp. 177-186
[11] Lehmer's totient problem and Carmichael numbers in a PID http://math.arizona.edu/~jschettler/Schettler.pdf
[12] The least prime congruent to one modulo n, Amer. Math. Monthly, Volume 118 (2011) no. 8, pp. 737-742
[13] Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, 1982
[14] Zur Theorie der Potenzreste, Monatshefte Math., Volume 3 (1892) no. 1, pp. 265-284 | DOI
Cité par Sources :
☆ Supported by NSFC (Nos. 11471154, 11271177, 11571163).
Commentaires - Politique