[Faisceaux pervers et homologie de contact des nœuds]
In this paper, we give a new algebraic construction of knot contact homology in the sense of Ng [35]. For a link L in
Dans cette Note, nous donnons une nouvelle construction algébrique de l'homologie de contact des nœuds, au sens de Ng [37]. Pour un entrelacs L dans
Accepté le :
Publié le :
Yuri Berest 1 ; Alimjon Eshmatov 2 ; Wai-Kit Yeung 1
@article{CRMATH_2017__355_4_378_0, author = {Yuri Berest and Alimjon Eshmatov and Wai-Kit Yeung}, title = {Perverse sheaves and knot contact homology}, journal = {Comptes Rendus. Math\'ematique}, pages = {378--399}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.02.007}, language = {en}, }
Yuri Berest; Alimjon Eshmatov; Wai-Kit Yeung. Perverse sheaves and knot contact homology. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 378-399. doi : 10.1016/j.crma.2017.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.007/
[1] Spherical DG functors | arXiv
[2] Theorie der Zöpfe, Abh. Math. Semin. Univ. Hamb., Volume 4 (1925), pp. 47-72
[3] Minimal models in homotopy theory, Math. Ann., Volume 225 (1977), pp. 219-242
[4] Yu. Berest, A. Eshmatov, W.K. Yeung, Homotopy braid closure and link invariants, in preparation.
[5] Yu. Berest, A.C. Ramadoss, W.K. Yeung, Representation homology of spaces and higher Hochschild homology, in preparation.
[6] Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, vol. 82, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1974
[7] Virtual knot invariants from group biquandles and their cocycles, J. Knot Theory Ramif., Volume 18 (2009), pp. 957-972
[8] Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups, Pac. J. Math., Volume 221 (2005), pp. 1-27
[9]
, Elsevier (1995), pp. 73-126[10] Homotopy Limit Functors on Model Categories and Homotopical Categories, Mathematical Surveys and Monographs, vol. 113, AMS, Providence, RI, 2004
[11] The contact homology of Legendrian submanifolds in
[12] Legendrian contact homology in
[13] Knot contact homology, Geom. Topol., Volume 17 (2013), pp. 975-1112
[14] Filtrations on the knot contact homology of transverse knots, Math. Ann., Volume 355 (2013), pp. 1561-1591
[15] A complete knot invariant from contact homology | arXiv
[16] Invariants in contact topology, Berlin (Doc. Math.) (1998), pp. 327-338
[17] A-infinity functors and homotopy theory of DG-categories | arXiv
[18] Biquandles and virtual links, Topol. Appl., Volume 145 (2004), pp. 157-175
[19] Perverse sheaves and quivers, Duke Math. J., Volume 83 (1996), pp. 621-643
[20] Simplicial Homotopy Theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009
[21] Classical link invariants and the Burau representation, Pac. J. Math., Volume 144 (1990), pp. 277-292
[22] Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99, AMS, Providence, RI, 2003
[23] Model Categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., Providence, RI, 1999
[24] An approach to automorphisms of free groups and braids via transvections, Math. Z., Volume 209 (1992), pp. 131-152
[25] Action of braid groups on determinantal ideals, compact spaces and a stratification of Teichmüller space, Invent. Math., Volume 144 (2001), pp. 451-505
[26] Braided tensor categories, Adv. Math., Volume 102 (1993), pp. 20-78
[27] Traced monoidal categories, Math. Proc. Camb. Philos. Soc., Volume 119 (1996), pp. 447-468
[28] Perverse schobers | arXiv
[29] Perverse sheaves and graphs on surfaces | arXiv
[30] Sheaves on Manifolds, Springer-Verlag, Berlin, 1994
[31]
, Eur. Math. Soc., Zürich (2006), pp. 151-190[32] Rings of Fricke characters and automorphism groups of free groups, Math. Z., Volume 170 (1980), pp. 91-103
[33] Microlocal branes are constructible sheaves, Sel. Math. New Ser., Volume 15 (2009), pp. 563-619
[34] Constructible sheaves and the Fukaya category, J. Amer. Math. Soc., Volume 22 (2009), pp. 233-286
[35] Knot and braid invariants from contact homology I, Geom. Topol., Volume 9 (2005), pp. 247-297
[36] Knot and braid invariants from contact homology II, Geom. Topol., Volume 9 (2005), pp. 1603-1637
[37] Framed knot contact homology, Duke Math. J., Volume 141 (2008), pp. 365-406
[38] Combinatorial knot contact homology and transverse knots, Adv. Math., Volume 227 (2011), pp. 2189-2219
[39] (Bolyai Soc. Math. Stud.), Volume vol. 26, János Bolyai Math. Soc., Budapest (2014), pp. 485-530
[40] Augmentations are sheaves | arXiv
[41] Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990), pp. 1-26
[42] Categorification of
[43] Braid group actions on derived categories of coherent sheaves, Duke Math. J., Volume 108 (2001), pp. 37-108
[44] A survey of graphical languages for monoidal categories, Lecture Notes in Physics, vol. 813, Springer, 2011, pp. 289-355
[45] The conormal torus is a complete knot invariant | arXiv
[46] Symplectic structures from topological Fukaya categories | arXiv
[47] Legendrian knots and constructible sheaves | arXiv
[48] Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris, Volume 340 (2005), pp. 15-19
[49] What do dg-categories form?, Compos. Math., Volume 143 (2007), pp. 1335-1358
[50] The homotopy theory of dg-categories and derived Morita theory, Invent. Math., Volume 167 (2007), pp. 615-667
[51] The Yang–Baxter equation and invariants of links, Invent. Math., Volume 92 (1988), pp. 527-553
[52] Group invariants of links, Topology, Volume 31 (1992), pp. 399-406
- Representation Homology of Topological Spaces, International Mathematics Research Notices, Volume 2022 (2022) no. 6, p. 4093 | DOI:10.1093/imrn/rnaa023
- THE CONORMAL TORUS IS A COMPLETE KNOT INVARIANT, Forum of Mathematics, Pi, Volume 7 (2019) | DOI:10.1017/fmp.2019.1
Cité par 2 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier