In this paper, we give a new algebraic construction of knot contact homology in the sense of Ng [35]. For a link L in , we define a differential graded (DG) k-category with finitely many objects, whose quasi-equivalence class is a topological invariant of L. In the case when L is a knot, the endomorphism algebra of a distinguished object of coincides with the fully noncommutative knot DGA as defined by Ekholm, Etnyre, Ng, and Sullivan in [13]. The input of our construction is a natural action of the braid group on the category of perverse sheaves on a two-dimensional disk with singularities at n marked points, studied by Gelfand, MacPherson, and Vilonen in [19]. As an application, we show that the category of finite-dimensional representations of the link k-category defined as the 0-th homology of is equivalent to the category of perverse sheaves on that are singular along the link L. We also obtain several generalizations of the category by extending the Gelfand–MacPherson–Vilonen braid group action. Detailed proofs of results announced in this paper will appear in [4].
Dans cette Note, nous donnons une nouvelle construction algébrique de l'homologie de contact des nœuds, au sens de Ng [37]. Pour un entrelacs L dans , nous définissons une k-catégorie différentielle graduée ayant un nombre fini d'objets, dont la classe de quasi-équivalence est un invariant topologique de L. Lorsque L est un nœud, l'algèbre des endomorphismes d'un objet distingué de coïncide avec l'algèbre différentielle graduée, pleinement non commutative du nœud, définie par Ekholm, Etnyre, Ng et Sullivan dans [12]. Notre construction se base sur une action naturelle du groupe de tresses sur la catégorie des faisceaux pervers sur un disque de dimension deux avec singularités en n points marqués, étudiée par Gelfand, McPherson et Vilonen dans [19]. Comme application, nous montrons que la catégorie des représentations de dimension finie de la k-catégorie d'entrelacs , définie comme l'homologie de degré 0 de , est équivalente à la catégorie des faisceaux pervers sur qui sont singuliers le long de l'entrelacs L. Nous obtenons également plusieurs généralisations de la catégorie en étendant l'action du groupe de tresses de Gelfand–MacPherson–Vilonen.
Accepted:
Published online:
Yuri Berest 1; Alimjon Eshmatov 2; Wai-Kit Yeung 1
@article{CRMATH_2017__355_4_378_0, author = {Yuri Berest and Alimjon Eshmatov and Wai-Kit Yeung}, title = {Perverse sheaves and knot contact homology}, journal = {Comptes Rendus. Math\'ematique}, pages = {378--399}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.02.007}, language = {en}, }
Yuri Berest; Alimjon Eshmatov; Wai-Kit Yeung. Perverse sheaves and knot contact homology. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 378-399. doi : 10.1016/j.crma.2017.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.007/
[1] Spherical DG functors | arXiv
[2] Theorie der Zöpfe, Abh. Math. Semin. Univ. Hamb., Volume 4 (1925), pp. 47-72
[3] Minimal models in homotopy theory, Math. Ann., Volume 225 (1977), pp. 219-242
[4] Yu. Berest, A. Eshmatov, W.K. Yeung, Homotopy braid closure and link invariants, in preparation.
[5] Yu. Berest, A.C. Ramadoss, W.K. Yeung, Representation homology of spaces and higher Hochschild homology, in preparation.
[6] Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, vol. 82, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1974
[7] Virtual knot invariants from group biquandles and their cocycles, J. Knot Theory Ramif., Volume 18 (2009), pp. 957-972
[8] Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups, Pac. J. Math., Volume 221 (2005), pp. 1-27
[9]
, Elsevier (1995), pp. 73-126[10] Homotopy Limit Functors on Model Categories and Homotopical Categories, Mathematical Surveys and Monographs, vol. 113, AMS, Providence, RI, 2004
[11] The contact homology of Legendrian submanifolds in , J. Differ. Geom., Volume 71 (2005), pp. 177-305
[12] Legendrian contact homology in , Trans. Amer. Math. Soc., Volume 359 (2007), pp. 3301-3335
[13] Knot contact homology, Geom. Topol., Volume 17 (2013), pp. 975-1112
[14] Filtrations on the knot contact homology of transverse knots, Math. Ann., Volume 355 (2013), pp. 1561-1591
[15] A complete knot invariant from contact homology | arXiv
[16] Invariants in contact topology, Berlin (Doc. Math.) (1998), pp. 327-338
[17] A-infinity functors and homotopy theory of DG-categories | arXiv
[18] Biquandles and virtual links, Topol. Appl., Volume 145 (2004), pp. 157-175
[19] Perverse sheaves and quivers, Duke Math. J., Volume 83 (1996), pp. 621-643
[20] Simplicial Homotopy Theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009
[21] Classical link invariants and the Burau representation, Pac. J. Math., Volume 144 (1990), pp. 277-292
[22] Model Categories and Their Localizations, Mathematical Surveys and Monographs, vol. 99, AMS, Providence, RI, 2003
[23] Model Categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., Providence, RI, 1999
[24] An approach to automorphisms of free groups and braids via transvections, Math. Z., Volume 209 (1992), pp. 131-152
[25] Action of braid groups on determinantal ideals, compact spaces and a stratification of Teichmüller space, Invent. Math., Volume 144 (2001), pp. 451-505
[26] Braided tensor categories, Adv. Math., Volume 102 (1993), pp. 20-78
[27] Traced monoidal categories, Math. Proc. Camb. Philos. Soc., Volume 119 (1996), pp. 447-468
[28] Perverse schobers | arXiv
[29] Perverse sheaves and graphs on surfaces | arXiv
[30] Sheaves on Manifolds, Springer-Verlag, Berlin, 1994
[31]
, Eur. Math. Soc., Zürich (2006), pp. 151-190[32] Rings of Fricke characters and automorphism groups of free groups, Math. Z., Volume 170 (1980), pp. 91-103
[33] Microlocal branes are constructible sheaves, Sel. Math. New Ser., Volume 15 (2009), pp. 563-619
[34] Constructible sheaves and the Fukaya category, J. Amer. Math. Soc., Volume 22 (2009), pp. 233-286
[35] Knot and braid invariants from contact homology I, Geom. Topol., Volume 9 (2005), pp. 247-297
[36] Knot and braid invariants from contact homology II, Geom. Topol., Volume 9 (2005), pp. 1603-1637
[37] Framed knot contact homology, Duke Math. J., Volume 141 (2008), pp. 365-406
[38] Combinatorial knot contact homology and transverse knots, Adv. Math., Volume 227 (2011), pp. 2189-2219
[39] (Bolyai Soc. Math. Stud.), Volume vol. 26, János Bolyai Math. Soc., Budapest (2014), pp. 485-530
[40] Augmentations are sheaves | arXiv
[41] Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys., Volume 127 (1990), pp. 1-26
[42] Categorification of and braid groups, Contemp. Math., Volume 406 (2006), pp. 137-167
[43] Braid group actions on derived categories of coherent sheaves, Duke Math. J., Volume 108 (2001), pp. 37-108
[44] A survey of graphical languages for monoidal categories, Lecture Notes in Physics, vol. 813, Springer, 2011, pp. 289-355
[45] The conormal torus is a complete knot invariant | arXiv
[46] Symplectic structures from topological Fukaya categories | arXiv
[47] Legendrian knots and constructible sheaves | arXiv
[48] Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris, Volume 340 (2005), pp. 15-19
[49] What do dg-categories form?, Compos. Math., Volume 143 (2007), pp. 1335-1358
[50] The homotopy theory of dg-categories and derived Morita theory, Invent. Math., Volume 167 (2007), pp. 615-667
[51] The Yang–Baxter equation and invariants of links, Invent. Math., Volume 92 (1988), pp. 527-553
[52] Group invariants of links, Topology, Volume 31 (1992), pp. 399-406
Cited by Sources:
Comments - Policy