[Sur un opérateur bilinéaire discret singulier]
Nous montrons, que pour une grande classe de fonctions P et Q, l'opérateur bilinéaire discret est borné de dans , pour tout .
We prove that for a large class of functions P and Q, the discrete bilinear operator is bounded from into for any .
Accepté le :
Publié le :
Dong Dong 1
@article{CRMATH_2017__355_5_538_0, author = {Dong Dong}, title = {On a discrete bilinear singular operator}, journal = {Comptes Rendus. Math\'ematique}, pages = {538--542}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.03.010}, language = {en}, }
Dong Dong. On a discrete bilinear singular operator. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 538-542. doi : 10.1016/j.crma.2017.03.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.010/
[1] Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHÉS, Volume 69 (1989), pp. 5-45 (with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein)
[2] Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2), Volume 150 (1999) no. 2, pp. 489-577
[3] Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 889-933
[4] The disc as a bilinear multiplier, Amer. J. Math., Volume 128 (2006) no. 1, pp. 91-119
[5] Discrete Fourier restriction associated with Schrödinger equations, Rev. Mat. Iberoam., Volume 30 (2014) no. 4, pp. 1281-1300
[6] Discrete Radon transforms and applications to ergodic theory, Acta Math., Volume 198 (2007) no. 2, pp. 231-298
[7] boundedness of discrete singular Radon transforms, J. Amer. Math. Soc., Volume 19 (2006) no. 2, pp. 357-383 (published electronically: 24 October 2005)
[8] Polynomial ergodic averages converge rapidly: variations on a theorem of Bourgain | arXiv
[9] estimates on the bilinear Hilbert transform for , Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 693-724
[10] On Calderón's conjecture, Ann. of Math. (2), Volume 149 (1999) no. 2, pp. 475-496
[11] Uniform bounds for the bilinear Hilbert transforms. II, Rev. Mat. Iberoam., Volume 22 (2006) no. 3, pp. 1069-1126
[12] Uniform estimates for some paraproducts, N.Y. J. Math., Volume 14 (2008), pp. 145-192
[13] Bilinear Hilbert transforms along curves I: the monomial case, Anal. PDE, Volume 6 (2013) no. 1, pp. 197-220
[14] Uniform estimates for bilinear Hilbert transform and bilinear maximal functions associated to polynomials, Amer. J. Math., Volume 138 (2016) no. 4, pp. 907-962
[15] Square function estimates for discrete Radon transforms | arXiv
[16] -estimates for discrete operators of Radon type: maximal functions and vector-valued estimates | arXiv
[17] -estimates for discrete operators of Radon type: variational estimates, Invent. Math. (2017) (in press) | arXiv | DOI
[18] Cotlar's ergodic theorem along the prime numbers, J. Fourier Anal. Appl., Volume 21 (2015) no. 4, pp. 822-848
[19] Discrete maximal functions in higher dimensions and applications to ergodic theory, Amer. J. Math., Volume 138 (2016) no. 6, pp. 1495-1532
[20] Variational estimates for averages and truncated singular integrals along the prime numbers, Trans. Amer. Math. Soc. (2017) (in press) | arXiv | DOI
[21] Sur les fonctions conjuguées, Math. Z., Volume 27 (1928) no. 1, pp. 218-244
[22] Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., Volume 84 (1978) no. 6, pp. 1239-1295
[23] Discrete analogues of singular Radon transforms, Bull. Amer. Math. Soc. (N.S.), Volume 23 (1990) no. 2, pp. 537-544
[24] A uniform estimate, Ann. of Math. (2), Volume 156 (2002) no. 2, pp. 519-563
[25] Wave Packet Analysis, CBMS Regional Conference Series in Mathematics, vol. 105, 2006
[26] Variation estimates for averages along primes and polynomials, J. Funct. Anal., Volume 268 (2015) no. 1, pp. 210-238
Cité par Sources :
Commentaires - Politique