Comptes Rendus
Harmonic analysis
On a discrete bilinear singular operator
[Sur un opérateur bilinéaire discret singulier]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 538-542.

Nous montrons, que pour une grande classe de fonctions P et Q, l'opérateur bilinéaire discret TP,Q(f,g)(n)=mZ{0}f(nP(m))g(nQ(m))1m est borné de l2×l2 dans l1+ϵ,, pour tout ϵ(0,1].

We prove that for a large class of functions P and Q, the discrete bilinear operator TP,Q(f,g)(n)=mZ{0}f(nP(m))g(nQ(m))1m is bounded from l2×l2 into l1+ϵ, for any ϵ(0,1].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.03.010

Dong Dong 1

1 Department of Mathematics, University of Illinois at Urbana–Champaign, 1409 W. Green Street, Urbana, IL 61801, USA
@article{CRMATH_2017__355_5_538_0,
     author = {Dong Dong},
     title = {On a discrete bilinear singular operator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {538--542},
     publisher = {Elsevier},
     volume = {355},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crma.2017.03.010},
     language = {en},
}
TY  - JOUR
AU  - Dong Dong
TI  - On a discrete bilinear singular operator
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 538
EP  - 542
VL  - 355
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2017.03.010
LA  - en
ID  - CRMATH_2017__355_5_538_0
ER  - 
%0 Journal Article
%A Dong Dong
%T On a discrete bilinear singular operator
%J Comptes Rendus. Mathématique
%D 2017
%P 538-542
%V 355
%N 5
%I Elsevier
%R 10.1016/j.crma.2017.03.010
%G en
%F CRMATH_2017__355_5_538_0
Dong Dong. On a discrete bilinear singular operator. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 538-542. doi : 10.1016/j.crma.2017.03.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.010/

[1] J. Bourgain Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHÉS, Volume 69 (1989), pp. 5-45 (with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein)

[2] M. Christ; A. Nagel; E.M. Stein; S. Wainger Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2), Volume 150 (1999) no. 2, pp. 489-577

[3] L. Grafakos; X. Li Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 889-933

[4] L. Grafakos; X. Li The disc as a bilinear multiplier, Amer. J. Math., Volume 128 (2006) no. 1, pp. 91-119

[5] Y. Hu; X. Li Discrete Fourier restriction associated with Schrödinger equations, Rev. Mat. Iberoam., Volume 30 (2014) no. 4, pp. 1281-1300

[6] A. Ionescu; E.M. Stein; A. Magyar; S. Wainger Discrete Radon transforms and applications to ergodic theory, Acta Math., Volume 198 (2007) no. 2, pp. 231-298

[7] A. Ionescu; S. Wainger Lp boundedness of discrete singular Radon transforms, J. Amer. Math. Soc., Volume 19 (2006) no. 2, pp. 357-383 (published electronically: 24 October 2005)

[8] B. Krause Polynomial ergodic averages converge rapidly: variations on a theorem of Bourgain | arXiv

[9] M. Lacey; C. Thiele Lp estimates on the bilinear Hilbert transform for 2<p<, Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 693-724

[10] M. Lacey; C. Thiele On Calderón's conjecture, Ann. of Math. (2), Volume 149 (1999) no. 2, pp. 475-496

[11] X. Li Uniform bounds for the bilinear Hilbert transforms. II, Rev. Mat. Iberoam., Volume 22 (2006) no. 3, pp. 1069-1126

[12] X. Li Uniform estimates for some paraproducts, N.Y. J. Math., Volume 14 (2008), pp. 145-192

[13] X. Li Bilinear Hilbert transforms along curves I: the monomial case, Anal. PDE, Volume 6 (2013) no. 1, pp. 197-220

[14] X. Li; L. Xiao Uniform estimates for bilinear Hilbert transform and bilinear maximal functions associated to polynomials, Amer. J. Math., Volume 138 (2016) no. 4, pp. 907-962

[15] M. Mirek Square function estimates for discrete Radon transforms | arXiv

[16] M. Mirek; E.M. Stein; B. Trojan lp(Zd)-estimates for discrete operators of Radon type: maximal functions and vector-valued estimates | arXiv

[17] M. Mirek; E.M. Stein; B. Trojan lp(Zd)-estimates for discrete operators of Radon type: variational estimates, Invent. Math. (2017) (in press) | arXiv | DOI

[18] M. Mirek; B. Trojan Cotlar's ergodic theorem along the prime numbers, J. Fourier Anal. Appl., Volume 21 (2015) no. 4, pp. 822-848

[19] M. Mirek; B. Trojan Discrete maximal functions in higher dimensions and applications to ergodic theory, Amer. J. Math., Volume 138 (2016) no. 6, pp. 1495-1532

[20] M. Mirek; B. Trojan; P. Zorin-Kranich Variational estimates for averages and truncated singular integrals along the prime numbers, Trans. Amer. Math. Soc. (2017) (in press) | arXiv | DOI

[21] M. Riesz Sur les fonctions conjuguées, Math. Z., Volume 27 (1928) no. 1, pp. 218-244

[22] E.M. Stein; S. Wainger Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., Volume 84 (1978) no. 6, pp. 1239-1295

[23] E.M. Stein; S. Wainger Discrete analogues of singular Radon transforms, Bull. Amer. Math. Soc. (N.S.), Volume 23 (1990) no. 2, pp. 537-544

[24] C. Thiele A uniform estimate, Ann. of Math. (2), Volume 156 (2002) no. 2, pp. 519-563

[25] C. Thiele Wave Packet Analysis, CBMS Regional Conference Series in Mathematics, vol. 105, 2006

[26] P. Zorin-Kranich Variation estimates for averages along primes and polynomials, J. Funct. Anal., Volume 268 (2015) no. 1, pp. 210-238

Cité par Sources :

Commentaires - Politique