[Sur l'anneau de Chow de certaines variétés dont la cohomologie rationnelle est celle d'un tore]
Let
Soit
Accepté le :
Publié le :
Zhi Jiang 1, 2 ; Qizheng Yin 3
@article{CRMATH_2017__355_5_571_0, author = {Zhi Jiang and Qizheng Yin}, title = {On the {Chow} ring of certain rational cohomology tori}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--576}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.006}, language = {en}, }
Zhi Jiang; Qizheng Yin. On the Chow ring of certain rational cohomology tori. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 571-576. doi : 10.1016/j.crma.2017.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.006/
[1] Sur l'anneau de Chow d'une variété abélienne, Math. Ann., Volume 273 (1986) no. 4, pp. 647-651
[2] Complex Abelian Varieties, Grundlehren der Mathematischen Wissenschaften, vol. 302, Springer-Verlag, Berlin, 2004
[3] Rational cohomology tori, Geom. Topol., Volume 21 (2017) no. 2, pp. 1095-1130
[4] Smooth toric Deligne–Mumford stacks, J. Reine Angew. Math., Volume 648 (2010), pp. 201-244
[5] Characterization of abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276
[6] Abelian covers of algebraic varieties, J. Reine Angew. Math., Volume 417 (1991), pp. 191-213
[7] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989) no. 3, pp. 613-670
- Chow motives of genus one fibrations, Manuscripta Mathematica, Volume 175 (2024) no. 1-2, pp. 635-678 | DOI:10.1007/s00229-024-01557-z | Zbl:1551.14034
- Motives of moduli spaces of bundles on curves via variation of stability and flips, Journal of the London Mathematical Society. Second Series, Volume 108 (2023) no. 1, pp. 1-53 | DOI:10.1112/jlms.12739 | Zbl:1524.14073
- Motivic hyper-Kähler resolution conjecture. I: Generalized Kummer varieties, Geometry Topology, Volume 23 (2019) no. 1, pp. 427-492 | DOI:10.2140/gt.2019.23.427 | Zbl:1520.14009
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique