Let G be a torus with Lie algebra and let M be a G-Hamiltonian manifold with Kostant line bundle and proper moment map. Let be the weight lattice of G. We consider a parameter and the multiplicity of the quantized representation . Define for f a test function on . We prove that the distribution has an asymptotic development where the distributions are the twisted Duistermaat–Heckman distributions associated with the graded equivariant Todd class of M. When M is compact, and f polynomial, the asymptotic series is finite and exact.
Soit G un tore d'algèbre de Lie agissant de manière hamiltonienne sur une variété M. Soit un fibré de Kostant tel que l'application moment associée soit propre. Soit le réseau des poids de G. On considère un paramètre et la multiplicité de la représentation quantifiée . On définit la distribution pour f une fonction test sur . La distribution admet un développement asymptotique où les distributions sont des distributions associées aux composantes homogènes de la classe de Todd équivariante de M. Lorsque M est compacte et f polynomiale, cette série est finie et exacte.
Accepted:
Published online:
Michèle Vergne 1
@article{CRMATH_2017__355_5_563_0, author = {Mich\`ele Vergne}, title = {The equivariant {Riemann{\textendash}Roch} theorem and the graded {Todd} class}, journal = {Comptes Rendus. Math\'ematique}, pages = {563--570}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.01.009}, language = {en}, }
Michèle Vergne. The equivariant Riemann–Roch theorem and the graded Todd class. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 563-570. doi : 10.1016/j.crma.2017.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.009/
[1] New polytope decompositions and Euler—Maclaurin formulas for simple integral polytopes, Adv. Math., Volume 214 (2007) no. 1, pp. 379-416 | DOI
[2] Heat Kernels and Dirac Operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004 (Corrected reprint of the 1992 original)
[3] Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris, Ser. I, Volume 295 (1982) no. 9, pp. 539-541 (French, with English summary)
[4] Local asymptotic Euler—Maclaurin expansion for Riemann sums over a semi-rational polyhedron, 2015 | arXiv
[5] Box splines and the equivariant index theorem, J. Inst. Math. Jussieu, Volume 12 (2013) no. 3, pp. 503-544 | DOI
[6] The infinitesimal index, J. Inst. Math. Jussieu, Volume 12 (2013) no. 2, pp. 297-334 | DOI
[7] Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538 | DOI
[8] Riemann sums over polytopes, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 7, pp. 2183-2195 (English, with English and French summaries). Festival Yves Colin de Verdière
[9] Geometric quantization for proper moment maps: the Vergne conjecture, Acta Math., Volume 212 (2014) no. 1, pp. 11-57 | DOI
[10] Singular reduction and quantization, Topology, Volume 38 (1999) no. 4, pp. 699-762 | DOI
[11] Formules de localisation en cohomologie equivariante, Compos. Math., Volume 117 (1999) no. 3, pp. 243-293 (French, with English and French summaries) | DOI
[12] Localization of the Riemann–Roch character, J. Funct. Anal., Volume 187 (2001) no. 2, pp. 442-509 | DOI
[13] Formal geometric quantization, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 1, pp. 199-238 (English, with English and French summaries)
[14] Formal geometric quantization II, Pac. J. Math., Volume 253 (2011) no. 1, pp. 169-211 | DOI
[15] Wall-crossing formulas in Hamiltonian geometry, Geometric Aspects of Analysis and Mechanics, Progress in Mathematics, vol. 292, Birkhäuser/Springer, New York, 2011, pp. 295-343
[16] Witten non-Abelian localization for equivariant K-theory, and the theorem, 2015 | arXiv
[17] Formal equivariant class, splines and multiplicities of the index of transversally elliptic operators, Izv. Math., Volume 80 (2016)
[18] and Kostant partition functions, 2010 | arXiv
[19] Non-abelian symplectic cuts and the geometric quantization of noncompact manifolds, EuroConférence Moshé Flato 2000, Dijon, Part I (Lett. Math. Phys.), Volume 56 (2001) no. 1, pp. 31-40 (MR1848164) | DOI
[20] Supersymmetry and Morse theory, J. Differ. Geom., Volume 17 (1982) no. 4, pp. 661-692 (1983)
Cited by Sources:
Comments - Policy