Comptes Rendus
Number theory/Mathematical analysis
A new generalization of Apostol-type Laguerre–Genocchi polynomials
[Une nouvelle généralisation des polynômes de Laguerre–Genocchi de type Apostol]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 607-617.

Plusieurs extensions et variantes des polynômes dits de type Apostol ont été récemment étudiées. Motivés par ces travaux et leur utilité, notre but est d'introduire une nouvelle classe de polynômes de type Apostol généralisant les polynômes de Laguerre–Genochi associés aux polynômes de Milne–Thompson modifiés, introduits par Derre et Simsek, et d'en étudier de façon systématique les propriétés. Par exemple, nous donnons diverses formules implicites et des identités de symétrie. La nouvelle famille de polynômes introduite ici est très générale et contient comme cas particuliers beaucoup de polynômes connus. Les résultats présentés ici redonnent des propriétés et identités de ces polynômes connus.

Many extensions and variants of the so-called Apostol-type polynomials have recently been investigated. Motivated mainly by those works and their usefulness, we aim to introduce a new class of Apostol-type Laguerre–Genocchi polynomials associated with the modified Milne–Thomson's polynomials introduced by Derre and Simsek and investigate its properties, including, for example, various implicit formulas and symmetric identities in a systematic manner. The new family of polynomials introduced here, being very general, contains, as its special cases, many known polynomials. So the properties and identities presented here reduce to yield those results of the corresponding known polynomials.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.04.010
Nabiullah Khan 1 ; Talha Usman 1 ; Junesang Choi 2

1 Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
2 Department of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea
@article{CRMATH_2017__355_6_607_0,
     author = {Nabiullah Khan and Talha Usman and Junesang Choi},
     title = {A new generalization of {Apostol-type} {Laguerre{\textendash}Genocchi} polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {607--617},
     publisher = {Elsevier},
     volume = {355},
     number = {6},
     year = {2017},
     doi = {10.1016/j.crma.2017.04.010},
     language = {en},
}
TY  - JOUR
AU  - Nabiullah Khan
AU  - Talha Usman
AU  - Junesang Choi
TI  - A new generalization of Apostol-type Laguerre–Genocchi polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 607
EP  - 617
VL  - 355
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2017.04.010
LA  - en
ID  - CRMATH_2017__355_6_607_0
ER  - 
%0 Journal Article
%A Nabiullah Khan
%A Talha Usman
%A Junesang Choi
%T A new generalization of Apostol-type Laguerre–Genocchi polynomials
%J Comptes Rendus. Mathématique
%D 2017
%P 607-617
%V 355
%N 6
%I Elsevier
%R 10.1016/j.crma.2017.04.010
%G en
%F CRMATH_2017__355_6_607_0
Nabiullah Khan; Talha Usman; Junesang Choi. A new generalization of Apostol-type Laguerre–Genocchi polynomials. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 607-617. doi : 10.1016/j.crma.2017.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.010/

[1] E.T. Bell Exponential polynomials, Ann. Math., Volume 35 (1934), pp. 258-277

[2] J. Choi Notes on formal manipulations of double series, Commun. Korean Math. Soc., Volume 18 (2003) no. 4, pp. 781-789

[3] G. Dattoli; S. Lorenzutta; C. Caserano Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat., Volume 19 (1999), pp. 385-391

[4] G. Dattoli; A. Torre Operational methods and two variable Laguerre polynomials, Atti Accad. Torino, Volume 132 (1998), pp. 1-7

[5] R. Dere; Y. Simsek Bernoulli type polynomials on umbral algebra, Russ. J. Math. Phys., Volume 23 (2015) no. 1, pp. 1-6

[6] R. Dere; Y. Simsek; H.M. Srivastava A unified presentation of three families of generalized Apostol-type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, Volume 133 (2013), pp. 3245-3263

[7] S. Gaboury; B. Kurt Some relations involving Hermite-based Apostol–Genocchi polynomials, Appl. Math. Sci., Volume 6 (2012) no. 82, pp. 4091-4102

[8] B.N. Guo; F. Qi Generalization of Bernoulli polynomials, J. Math. Educ. Sci. Technol., Volume 33 (2002) no. 3, pp. 428-431

[9] Y. He; S. Araci; H.M. Srivastava; M. Acikgoz Some new identities for the Apostol–Bernoulli polynomials and the Apostol–Genocchi polynomials, Appl. Math. Comput., Volume 262 (2015), pp. 31-41

[10] H. Jolany; H. Shari; R.E. Alikelaye Some results for the Apostol–Genocchi polynomials of higher order, Bull. Malays. Math. Sci. Soc., Volume 2 (2013), pp. 465-479

[11] S. Khan; M.A. Pathan; N.A.M.H. Makhboul; G. Yasmin Implicit summation formula for Hermite and related polynomials, J. Math. Anal. Appl., Volume 344 (2008), pp. 408-416

[12] T. Kim On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at q=1, J. Math. Anal. Appl., Volume 331 (2007), pp. 779-792

[13] M.-S. Kim; S. Hu Sums of products of Apostol–Bernoulli numbers, Ramanujan J., Volume 28 (2012), pp. 113-123

[14] V. Kurt; B. Kurt On Hermite–Apostol–Genocchi polynomials, AIP Conf. Proc., Volume 1389 (2011), pp. 378-380 | DOI

[15] Q.-M. Luo q-extensions for the Apostol–Genocchi polynomials, Gen. Math., Volume 17 (2009) no. 2, pp. 113-125

[16] Q.-M. Luo Extensions for the Genocchi polynomials and their Fourier expansion and integral representations, Osaka J. Math., Volume 48 (2011), pp. 291-309 http://hdl.handle.net/11094/6673

[17] Q.-M. Luo; B.N. Guo; F. Qi; L. Debnath Generalization of Bernoulli numbers and polynomials, Int. J. Math. Math. Sci., Volume 59 (2003), pp. 3769-3776

[18] Q.-M. Luo; F. Qi; L. Debnath Generalization of Euler numbers and polynomials, Int. J. Math. Math. Sci., Volume 61 (2003), pp. 3893-3901

[19] Q.-M. Luo; H.M. Srivastava Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl., Volume 308 (2005) no. 1, pp. 290-302

[20] Q.-M. Luo; H.M. Srivastava Some relationships between the Apostol–Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., Volume 51 (2006), pp. 631-642

[21] Q.-M. Luo; H.M. Srivastava Some generalizations of the Apostol–Genocchi polynomials and the Stirling number of the second kind, Appl. Math. Comput., Volume 217 (2011), pp. 5702-5728

[22] L.M. Thomsons Two classes of generalized polynomials, Proc. Lond. Math. Soc., Volume 35 (1933) no. 1, pp. 514-522

[23] E.D. Rainville Special Functions, Macmillan Company, New York, 1960 (Reprinted by, 1971, Chelsea Publishing Company, Bronx, New York)

[24] H.M. Srivastava; J. Choi Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012

[25] H.M. Srivastava; H.L. Manocha A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984

[26] S. Yang An identity of symmetry for the Bernoulli polynomials, Discrete Math., Volume 308 (2008), pp. 550-554

[27] Z. Zhang; H. Yang Several identities for the generalized Apostol–Bernoulli polynomials, Comput. Math. Appl., Volume 56 (2008) no. 12, pp. 2993-2999

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Appell and Sheffer sequences: on their characterizations through functionals and examples

Sergio A. Carrillo; Miguel Hurtado

C. R. Math (2021)


Applications aux sommes elliptiques d'Apostol–Dedekind–Zagier

Abdelmejid Bayad

C. R. Math (2004)


Sommes elliptiques multiples d'Apostol–Dedekind–Zagier

Abdelmejid Bayad

C. R. Math (2004)