Many extensions and variants of the so-called Apostol-type polynomials have recently been investigated. Motivated mainly by those works and their usefulness, we aim to introduce a new class of Apostol-type Laguerre–Genocchi polynomials associated with the modified Milne–Thomson's polynomials introduced by Derre and Simsek and investigate its properties, including, for example, various implicit formulas and symmetric identities in a systematic manner. The new family of polynomials introduced here, being very general, contains, as its special cases, many known polynomials. So the properties and identities presented here reduce to yield those results of the corresponding known polynomials.
Plusieurs extensions et variantes des polynômes dits de type Apostol ont été récemment étudiées. Motivés par ces travaux et leur utilité, notre but est d'introduire une nouvelle classe de polynômes de type Apostol généralisant les polynômes de Laguerre–Genochi associés aux polynômes de Milne–Thompson modifiés, introduits par Derre et Simsek, et d'en étudier de façon systématique les propriétés. Par exemple, nous donnons diverses formules implicites et des identités de symétrie. La nouvelle famille de polynômes introduite ici est très générale et contient comme cas particuliers beaucoup de polynômes connus. Les résultats présentés ici redonnent des propriétés et identités de ces polynômes connus.
Accepted:
Published online:
Nabiullah Khan 1; Talha Usman 1; Junesang Choi 2
@article{CRMATH_2017__355_6_607_0, author = {Nabiullah Khan and Talha Usman and Junesang Choi}, title = {A new generalization of {Apostol-type} {Laguerre{\textendash}Genocchi} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {607--617}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.04.010}, language = {en}, }
TY - JOUR AU - Nabiullah Khan AU - Talha Usman AU - Junesang Choi TI - A new generalization of Apostol-type Laguerre–Genocchi polynomials JO - Comptes Rendus. Mathématique PY - 2017 SP - 607 EP - 617 VL - 355 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2017.04.010 LA - en ID - CRMATH_2017__355_6_607_0 ER -
Nabiullah Khan; Talha Usman; Junesang Choi. A new generalization of Apostol-type Laguerre–Genocchi polynomials. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 607-617. doi : 10.1016/j.crma.2017.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.010/
[1] Exponential polynomials, Ann. Math., Volume 35 (1934), pp. 258-277
[2] Notes on formal manipulations of double series, Commun. Korean Math. Soc., Volume 18 (2003) no. 4, pp. 781-789
[3] Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat., Volume 19 (1999), pp. 385-391
[4] Operational methods and two variable Laguerre polynomials, Atti Accad. Torino, Volume 132 (1998), pp. 1-7
[5] Bernoulli type polynomials on umbral algebra, Russ. J. Math. Phys., Volume 23 (2015) no. 1, pp. 1-6
[6] A unified presentation of three families of generalized Apostol-type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, Volume 133 (2013), pp. 3245-3263
[7] Some relations involving Hermite-based Apostol–Genocchi polynomials, Appl. Math. Sci., Volume 6 (2012) no. 82, pp. 4091-4102
[8] Generalization of Bernoulli polynomials, J. Math. Educ. Sci. Technol., Volume 33 (2002) no. 3, pp. 428-431
[9] Some new identities for the Apostol–Bernoulli polynomials and the Apostol–Genocchi polynomials, Appl. Math. Comput., Volume 262 (2015), pp. 31-41
[10] Some results for the Apostol–Genocchi polynomials of higher order, Bull. Malays. Math. Sci. Soc., Volume 2 (2013), pp. 465-479
[11] Implicit summation formula for Hermite and related polynomials, J. Math. Anal. Appl., Volume 344 (2008), pp. 408-416
[12] On the analogs of Euler numbers and polynomials associated with p-adic q-integral on at , J. Math. Anal. Appl., Volume 331 (2007), pp. 779-792
[13] Sums of products of Apostol–Bernoulli numbers, Ramanujan J., Volume 28 (2012), pp. 113-123
[14] On Hermite–Apostol–Genocchi polynomials, AIP Conf. Proc., Volume 1389 (2011), pp. 378-380 | DOI
[15] q-extensions for the Apostol–Genocchi polynomials, Gen. Math., Volume 17 (2009) no. 2, pp. 113-125
[16] Extensions for the Genocchi polynomials and their Fourier expansion and integral representations, Osaka J. Math., Volume 48 (2011), pp. 291-309 http://hdl.handle.net/11094/6673
[17] Generalization of Bernoulli numbers and polynomials, Int. J. Math. Math. Sci., Volume 59 (2003), pp. 3769-3776
[18] Generalization of Euler numbers and polynomials, Int. J. Math. Math. Sci., Volume 61 (2003), pp. 3893-3901
[19] Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl., Volume 308 (2005) no. 1, pp. 290-302
[20] Some relationships between the Apostol–Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., Volume 51 (2006), pp. 631-642
[21] Some generalizations of the Apostol–Genocchi polynomials and the Stirling number of the second kind, Appl. Math. Comput., Volume 217 (2011), pp. 5702-5728
[22] Two classes of generalized polynomials, Proc. Lond. Math. Soc., Volume 35 (1933) no. 1, pp. 514-522
[23] Special Functions, Macmillan Company, New York, 1960 (Reprinted by, 1971, Chelsea Publishing Company, Bronx, New York)
[24] Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012
[25] A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984
[26] An identity of symmetry for the Bernoulli polynomials, Discrete Math., Volume 308 (2008), pp. 550-554
[27] Several identities for the generalized Apostol–Bernoulli polynomials, Comput. Math. Appl., Volume 56 (2008) no. 12, pp. 2993-2999
Cited by Sources:
Comments - Policy