[L'homologie cyclique des algèbres produits-croisés, I]
Dans cette note, on donne des quasi-isomorphismes explicites calculant l'homologie cyclique des algèbres produits-croisés.
In this note we produce explicit quasi-isomorphisms computing the cyclic homology of crossed-product algebras.
Accepté le :
Publié le :
Raphaël Ponge 1
@article{CRMATH_2017__355_6_618_0, author = {Rapha\"el Ponge}, title = {The cyclic homology of crossed-product algebras, {I}}, journal = {Comptes Rendus. Math\'ematique}, pages = {618--622}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.04.012}, language = {en}, }
Raphaël Ponge. The cyclic homology of crossed-product algebras, I. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 618-622. doi : 10.1016/j.crma.2017.04.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.012/
[1] Chern character for discrete groups, A Fête of Topology, Academic Press, Boston, 1988, pp. 163-232
[2] The periodic cyclic homology of crossed products of finite type algebras, Adv. Math., Volume 306 (2017), pp. 494-523
[3] Cyclic cohomology of étale groupoids, K-Theory, Volume 8 (1994), pp. 341-365
[4] The cyclic homology of the group rings, Comment. Math. Helv., Volume 60 (1985), pp. 354-365
[5] Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[6] Cyclic cohomology and the transverse fundamental class of a foliation, Pitman Research Notes in Mathematics, vol. 123, Longman, Harlow, 1986, pp. 52-144
[7] Noncommutative Geometry, Academic Press, San Diego, 1994
[8] Cyclic cohomology of étale groupoids: the general case, K-Theory, Volume 17 (1999), pp. 319-362
[9] On a class of groups satisfying Bass' conjecture, Invent. Math., Volume 132 (1998), pp. 307-330
[10] Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras, Lecture Notes in Math., vol. 1289, Springer, 1987, pp. 210-239
[11] The cyclic cohomology of crossed product algebras, J. Reine Angew. Math., Volume 445 (1993), pp. 161-174
[12] Nilpotency of Connes' periodicity operator and the idempotent conjectures, K-Theory, Volume 9 (1995), pp. 59-76
[13] Bivariant cyclic theory, K-Theory, Volume 3 (1989), pp. 339-365
[14] Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math., Volume 408 (1990), pp. 159-180
[15] Cyclic Homology, Springer, Berlin, 1992
[16] Cyclic homology of group rings, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 210-239
[17] Group cohomology and the cyclic cohomology of crossed products, Invent. Math., Volume 99 (1990), pp. 411-424
[18] The cyclic homology of crossed-product algebras, II, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 623-627
[19] R. Ponge, Perturbation lemma, para-S-modules, and cup product for paracyclic modules, in preparation.
Cité par Sources :
Commentaires - Politique