[Existence de mesures invariantes pour des équations dispersives stochastiques]
On étudie le comportement asymptotique des solutions d'équations dispersives stochastiques amorties, en particulier les équation de KdV et les équations de Schrödinger. Nous montrons que le semi-groupe de transition est Feller et nous établissons l'existence d'une mesure invariante grâce à la propriété de compacité asymptotique du semi-groupe de transition et au critère d'Aldous.
We address the long-time behavior of solutions to damped dispersive stochastic partial differential equations, namely the KdV equation and the nonlinear Schrödinger equation on the whole space. We prove that the transition semigroup is Feller and establish the existence of an invariant measure using the asymptotic compactness property of the transition semigroup and the Aldous criterion.
Accepté le :
Publié le :
Ibrahim Ekren 1 ; Igor Kukavica 1 ; Mohammed Ziane 2
@article{CRMATH_2017__355_6_676_0, author = {Ibrahim Ekren and Igor Kukavica and Mohammed Ziane}, title = {Existence of invariant measures for some damped stochastic dispersive equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {676--679}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.04.018}, language = {en}, }
TY - JOUR AU - Ibrahim Ekren AU - Igor Kukavica AU - Mohammed Ziane TI - Existence of invariant measures for some damped stochastic dispersive equations JO - Comptes Rendus. Mathématique PY - 2017 SP - 676 EP - 679 VL - 355 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2017.04.018 LA - en ID - CRMATH_2017__355_6_676_0 ER -
Ibrahim Ekren; Igor Kukavica; Mohammed Ziane. Existence of invariant measures for some damped stochastic dispersive equations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 676-679. doi : 10.1016/j.crma.2017.04.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.018/
[1] Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations, Commun. Math. Phys., Volume 330 (2014) no. 2, pp. 819-857
[2] Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, UK, 1996
[3] On the stochastic Korteweg–de Vries equation, J. Funct. Anal., Volume 154 (1998) no. 1, pp. 215-251
[4] The stochastic nonlinear Schrödinger equation in , Stoch. Anal. Appl., Volume 21 (2003) no. 1, pp. 97-126
[5] Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ., Volume 5 (2005) no. 3, pp. 317-356
[6] Existence of invariant measures for the stochastic damped KdV equation, Indiana Univ. Math. J. (2017) (in press)
[7] Existence of invariant measures for the stochastic damped Schrödinger equation, Stoch. Partial Differ. Equ., Anal. Computat. (2017) (in press)
[8] Dissipativity and invariant measures for stochastic Navier–Stokes equations, Nonlinear Differ. Equ. Appl., Volume 1 (1994) no. 4, pp. 403-423
[9] Regularity of the attractor for a weakly damped nonlinear Schrödinger equation, Appl. Anal., Volume 60 (1996) no. 1–2, pp. 99-119
[10] On unique ergodicity in nonlinear stochastic partial differential equations, J. Stat. Phys. (2017) (in press)
[11] Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing, Ann. of Math. (2), Volume 164 (2006) no. 3, pp. 993-1032
[12] Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., Volume 55 (2006) no. 2, pp. 687-717
[13] Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl., Volume 2 (1956) no. 2, pp. 157-214
[14] The global attractor of a weakly damped, forced Korteweg–de Vries equation in , Rio de Janeiro, 1999 (Mat. Contemp.), Volume vol. 19 (2000), pp. 129-152
[15] Sur un problème non linéaire, J. Math. Pures Appl. (9), Volume 48 (1969), pp. 159-172
Cité par Sources :
Commentaires - Politique