We consider a class of eigenvalue problems involving coefficients changing sign on the domain of interest. We describe the main spectral properties of these problems according to the features of the coefficients. Then, under some assumptions on the mesh, we explain how one can use classical finite element methods to approximate the spectrum as well as the eigenfunctions while avoiding spurious modes. We also prove localisation results of the eigenfunctions for certain sets of coefficients.
Nous étudions, d'un point de vue théorique et numérique, des problèmes aux valeurs propres mettant en jeu des coefficients dont le signe change sur le domaine d'intérêt.
Accepted:
Published online:
Camille Carvalho 1; Lucas Chesnel 2; Patrick Ciarlet 3
@article{CRMATH_2017__355_6_671_0, author = {Camille Carvalho and Lucas Chesnel and Patrick Ciarlet}, title = {Eigenvalue problems with sign-changing coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {671--675}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.05.002}, language = {en}, }
Camille Carvalho; Lucas Chesnel; Patrick Ciarlet. Eigenvalue problems with sign-changing coefficients. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 671-675. doi : 10.1016/j.crma.2017.05.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.002/
[1] An optimization-based numerical method for diffusion problems with sign-changing coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017) no. 4, pp. 472-478 | DOI
[2] Eigenvalue problems, Handbook of Numerical Analysis, vol. II, North-Holland, Amsterdam, 1991, pp. 641-787 in: P. G. Ciarlet, J.-L. Lions (Eds.)
[3] T-coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM: M2AN, Volume 46 (2012), pp. 1363-1387
[4] Mesh requirements for the finite element approximation of problems with sign-changing coefficients, 2016 (preprint version 1) | HAL
[5] Time harmonic wave diffraction problems in materials with sign-shifting coefficients, J. Comput. Appl. Math., Volume 234 (2010), pp. 1912-1919 (corrigendum p. 2616)
[6] Compact imbeddings in electromagnetism with interfaces between classical materials and meta-materials, SIAM J. Math. Anal., Volume 43 (2011), pp. 2150-2169
[7] T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., Volume 124 (2013), pp. 1-29
[8] Shapes and Geometries – Metrics, Analysis, Differential Calculus and Optimization, vol. 22, SIAM, 2011
[9] Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc., Volume 295 (1986) no. 1, pp. 305-324
[10] A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients, J. Comput. Appl. Math., Volume 235 (2011) no. 14, pp. 4272-4282
[11] Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators), Proc. Lond. Math. Soc., Volume 100 (2010), pp. 864-900
Cited by Sources:
Comments - Policy