[Finitude à la Kimura de fibrations en quadriques sur des courbes lisses]
Utilisant la théorie récente des motifs non commutatifs, nous prouvons que le motif mixte de Voevodsky d'une fibration en quadriques sur une courbe lisse est fini au sens de Kimura.
Making use of the recent theory of noncommutative mixed motives, we prove that the Voevodsky's mixed motive of a quadric fibration over a smooth curve is Kimura-finite.
Accepté le :
Publié le :
Gonçalo Tabuada 1, 2, 3
@article{CRMATH_2017__355_6_628_0, author = {Gon\c{c}alo Tabuada}, title = {Kimura-finiteness of quadric fibrations over smooth curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {628--632}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.05.006}, language = {en}, }
Gonçalo Tabuada. Kimura-finiteness of quadric fibrations over smooth curves. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 628-632. doi : 10.1016/j.crma.2017.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.006/
[1] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Volume 130 (2008) no. 5, pp. 1337-1398
[2] Motifs de dimension finie (d'après S.-I. Kimura, P. O'Sullivan), Séminaire Bourbaki, vol. 2003/2004, Astérisque, vol. 299, 2005, pp. 115-145 (Exp. No. 929)
[3] Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems, J. Math. Pures Appl. (9), Volume 102 (2014) no. 1, pp. 249-291
[4] Motives of quadric bundles, Manuscr. Math., Volume 149 (2016) no. 3–4, pp. 347-368
[5] Using stacks to impose tangency conditions on curves, Amer. J. Math., Volume 129 (2007) no. 2, pp. 405-427
[6] Skew category, Galois covering and smash product of a k-category, Proc. Amer. Math. Soc., Volume 134 (2005) no. 1, pp. 39-50
[7] Finite-dimensional objects in distinguished triangles, J. Number Theory, Volume 119 (2006) no. 1, pp. 99-127
[8] The special McKay correspondence and exceptional collections, Tohoku Math. J. (2), Volume 67 (2015) no. 4, pp. 585-609
[9] On differential graded categories, Madrid, Eur. Math. Soc., Zürich (2006), pp. 151-190
[10] On triangulated orbit categories, Doc. Math., Volume 10 (2005), pp. 551-581
[11] Chow groups are finite dimensional, in some sense, Math. Ann., Volume 331 (2005) no. 1, pp. 173-201
[12] Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., Volume 218 (2008) no. 5, pp. 1340-1369
[13] Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc., Volume 23 (2010), pp. 853-908
[14] Schur functors and motives, K-Theory, Volume 33 (2004) no. 2, pp. 89-106
[15] Noncommutative Motives, University Lecture Series, vol. 63, American Mathematical Society, Providence, RI, 2015 (with a preface by Yuri I. Manin)
[16] Recent developments on noncommutative motives | arXiv
[17] Voevodsky's mixed motives versus Kontsevich's noncommutative mixed motives, Adv. Math., Volume 264 (2014), pp. 506-545
[18] Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu, Volume 14 (2015) no. 2, pp. 379-403
[19] Algebraic cycles and fibrations, Doc. Math., Volume 18 (2013), pp. 1521-1553
[20] Triangulated categories of motives over a field, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, NJ, USA, 2000, pp. 188-238
Cité par Sources :
Commentaires - Politique