Comptes Rendus
Homological algebra/Algebraic geometry
Kimura-finiteness of quadric fibrations over smooth curves
[Finitude à la Kimura de fibrations en quadriques sur des courbes lisses]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 628-632.

Utilisant la théorie récente des motifs non commutatifs, nous prouvons que le motif mixte de Voevodsky d'une fibration en quadriques sur une courbe lisse est fini au sens de Kimura.

Making use of the recent theory of noncommutative mixed motives, we prove that the Voevodsky's mixed motive of a quadric fibration over a smooth curve is Kimura-finite.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.05.006

Gonçalo Tabuada 1, 2, 3

1 Department of Mathematics, MIT, Cambridge, MA 02139, USA
2 Departamento de Matemática, FCT, UNL, Portugal
3 Centro de Matemática e Aplicações (CMA), FCT, UNL, Portugal
@article{CRMATH_2017__355_6_628_0,
     author = {Gon\c{c}alo Tabuada},
     title = {Kimura-finiteness of quadric fibrations over smooth curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {628--632},
     publisher = {Elsevier},
     volume = {355},
     number = {6},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.006},
     language = {en},
}
TY  - JOUR
AU  - Gonçalo Tabuada
TI  - Kimura-finiteness of quadric fibrations over smooth curves
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 628
EP  - 632
VL  - 355
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2017.05.006
LA  - en
ID  - CRMATH_2017__355_6_628_0
ER  - 
%0 Journal Article
%A Gonçalo Tabuada
%T Kimura-finiteness of quadric fibrations over smooth curves
%J Comptes Rendus. Mathématique
%D 2017
%P 628-632
%V 355
%N 6
%I Elsevier
%R 10.1016/j.crma.2017.05.006
%G en
%F CRMATH_2017__355_6_628_0
Gonçalo Tabuada. Kimura-finiteness of quadric fibrations over smooth curves. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 628-632. doi : 10.1016/j.crma.2017.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.006/

[1] D. Abramovich; T. Graber; A. Vistoli Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Volume 130 (2008) no. 5, pp. 1337-1398

[2] Y. André Motifs de dimension finie (d'après S.-I. Kimura, P. O'Sullivan), Séminaire Bourbaki, vol. 2003/2004, Astérisque, vol. 299, 2005, pp. 115-145 (Exp. No. 929)

[3] A. Auel; M. Bernardara; M. Bolognesi Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems, J. Math. Pures Appl. (9), Volume 102 (2014) no. 1, pp. 249-291

[4] J. Bouali Motives of quadric bundles, Manuscr. Math., Volume 149 (2016) no. 3–4, pp. 347-368

[5] C. Cadman Using stacks to impose tangency conditions on curves, Amer. J. Math., Volume 129 (2007) no. 2, pp. 405-427

[6] C. Cibils; E. Marcos Skew category, Galois covering and smash product of a k-category, Proc. Amer. Math. Soc., Volume 134 (2005) no. 1, pp. 39-50

[7] V. Guletskii Finite-dimensional objects in distinguished triangles, J. Number Theory, Volume 119 (2006) no. 1, pp. 99-127

[8] A. Ishii; K. Ueda The special McKay correspondence and exceptional collections, Tohoku Math. J. (2), Volume 67 (2015) no. 4, pp. 585-609

[9] B. Keller On differential graded categories, Madrid, Eur. Math. Soc., Zürich (2006), pp. 151-190

[10] B. Keller On triangulated orbit categories, Doc. Math., Volume 10 (2005), pp. 551-581

[11] S.-I. Kimura Chow groups are finite dimensional, in some sense, Math. Ann., Volume 331 (2005) no. 1, pp. 173-201

[12] A. Kuznetsov Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., Volume 218 (2008) no. 5, pp. 1340-1369

[13] V. Lunts; D. Orlov Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc., Volume 23 (2010), pp. 853-908

[14] C. Mazza Schur functors and motives, K-Theory, Volume 33 (2004) no. 2, pp. 89-106

[15] G. Tabuada Noncommutative Motives, University Lecture Series, vol. 63, American Mathematical Society, Providence, RI, 2015 (with a preface by Yuri I. Manin)

[16] G. Tabuada Recent developments on noncommutative motives | arXiv

[17] G. Tabuada Voevodsky's mixed motives versus Kontsevich's noncommutative mixed motives, Adv. Math., Volume 264 (2014), pp. 506-545

[18] G. Tabuada; M. Van den Bergh Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu, Volume 14 (2015) no. 2, pp. 379-403

[19] C. Vial Algebraic cycles and fibrations, Doc. Math., Volume 18 (2013), pp. 1521-1553

[20] V. Voevodsky Triangulated categories of motives over a field, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, NJ, USA, 2000, pp. 188-238

Cité par Sources :

Commentaires - Politique