[Structures de poids tensorielles et
We give a condition which characterises those weight structures on a derived category which come from a Thomason filtration on the underlying scheme. Weight structures satisfying our condition will be called
On dégage une condition qui caractérise les structures de poids sur une catégorie dérivée qui proviennent d’une filtration de Thomason sur le schéma sous-jacent. Les structures de poids satisfaisant notre condition s’appelleront des
Révisé le :
Accepté le :
Publié le :
Umesh V. Dubey 1 ; Gopinath Sahoo 1

@article{CRMATH_2023__361_G5_877_0, author = {Umesh V. Dubey and Gopinath Sahoo}, title = {Tensor weight structures and t-structures on the derived categories of schemes}, journal = {Comptes Rendus. Math\'ematique}, pages = {877--888}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.450}, language = {en}, }
TY - JOUR AU - Umesh V. Dubey AU - Gopinath Sahoo TI - Tensor weight structures and t-structures on the derived categories of schemes JO - Comptes Rendus. Mathématique PY - 2023 SP - 877 EP - 888 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.450 LA - en ID - CRMATH_2023__361_G5_877_0 ER -
Umesh V. Dubey; Gopinath Sahoo. Tensor weight structures and t-structures on the derived categories of schemes. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 877-888. doi : 10.5802/crmath.450. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.450/
[1] Compactly generated
[2] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Société Mathématique de France, 1982, pp. 5-171 | MR | Zbl
[3] Perverse coherent sheaves (after Deligne) (2000) | arXiv
[4] Weight structures vs.
[5] On constructing weight structures and extending them to idempotent completions, Homology Homotopy Appl., Volume 20 (2018) no. 1, pp. 37-57 | DOI | MR | Zbl
[6] Direct products of modules, Trans. Am. Math. Soc., Volume 97 (1960), pp. 457-473 | DOI | MR | Zbl
[7] Compactly generated tensor t-structures on the derived category of a Noetherian scheme (2022) | arXiv
[8]
[9] Axiomatic stable homotopy theory, Mem. Am. Math. Soc., Volume 128 (1997) no. 610, p. x+114 | DOI | MR | Zbl
[10] The derived category of the projective line, Spectral structures and topological methods in mathematics (EMS Series of Congress Reports), European Mathematical Society, 2019, pp. 275-297 | DOI | MR | Zbl
[11] Compact corigid objects in triangulated categories and co-
[12] On compactly generated torsion pairs and the classification of co-
[13] The classification of triangulated subcategories, Compos. Math., Volume 105 (1997) no. 1, pp. 1-27 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique