[Une remarque sur le résultat de Liao et Rams concernant la distribution des fractions continues dont le plus grand quotient partiel croît en ]
Étant donné un réel , soit son développement en fraction continue. Soit le plus grand quotient partiel jusqu'à n. Pour tout , soit . Pour un ensemble , soit sa dimension de Hausdorff. Récemment, Lingmin Liao et Michal Rams ont montré que pour tout . Dans cet article, nous montrons que pour tout en suivant la méthode de Liao et Rams, ce qui complète leur résultat.
For a real , let be its continued fraction expansion. Denote by the maximum partial quotient up to n. For any real , let . For a set , let be its Hausdorff dimension. Recently, Lingmin Liao and Michal Rams showed that for any . In this paper, we show that for any following Liao and Rams' method, which supplements their result.
Accepté le :
Publié le :
Liangang Ma 1
@article{CRMATH_2017__355_7_734_0, author = {Liangang Ma}, title = {A remark on {Liao} and {Rams'} result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions}, journal = {Comptes Rendus. Math\'ematique}, pages = {734--737}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.05.012}, language = {en}, }
TY - JOUR AU - Liangang Ma TI - A remark on Liao and Rams' result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions JO - Comptes Rendus. Mathématique PY - 2017 SP - 734 EP - 737 VL - 355 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2017.05.012 LA - en ID - CRMATH_2017__355_7_734_0 ER -
%0 Journal Article %A Liangang Ma %T A remark on Liao and Rams' result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions %J Comptes Rendus. Mathématique %D 2017 %P 734-737 %V 355 %N 7 %I Elsevier %R 10.1016/j.crma.2017.05.012 %G en %F CRMATH_2017__355_7_734_0
Liangang Ma. A remark on Liao and Rams' result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 734-737. doi : 10.1016/j.crma.2017.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.012/
[1] Hausdorff dimension of real numbers with bounded digit averages, Acta Arith., Volume 125 (2006), pp. 115-162
[2] On Kintchine exponents and Lyapunov exponents of continued fractions, Ergod. Theory Dyn. Syst., Volume 29 (2009), pp. 73-109
[3] A remark on the extreme value theory for continued fractions, 2016 | arXiv
[4] Multifractal analysis of Birkhoff averages for countable Markov maps, Ergod. Theory Dyn. Syst., Volume 35 (2015), pp. 2559-2586
[5] Subexponentially increasing sums of partial quotients in continued fraction expansions, Math. Proc. Camb. Philos. Soc., Volume 160 (2016) no. 3, pp. 401-412
[6] Explicit continued fractions with expected partial quotient growth, Proc. Amer. Math. Soc., Volume 130 (2002) no. 3, pp. 1603-1605
[7] A conjecture of Erdös on continued fractions, Acta Arith., Volume 28 (1975/76) no. 4, pp. 379-386
[8] The distribution of the largest digit in continued fraction expansions, Math. Proc. Camb. Philos. Soc., Volume 146 (2009) no. 1, pp. 207-212
[9] On the distribution for sums of partial quotients in continued fraction expansions, Nonlinearity, Volume 24 (2011) no. 4, pp. 1177-1187
[10] On sums of partial quotients in continued fraction expansions, Nonlinearity, Volume 21 (2008) no. 9, pp. 2113-2120
Cité par Sources :
Commentaires - Politique