In this note, we consider the metric theory of the dynamical covering problems on the triadic Cantor set . More precisely, let be the natural map on , μ the standard Cantor measure and a given point. We consider the size of the set of points in which can be well approximated by the orbit of , namely the set
Nous considérons dans cette Note la théorie métrique des recouvrements dynamiques dans l'ensemble de Cantor triadique . Plus précisément, soit l'application naturelle sur , μ la mesure de Cantor standard et un point donné. Nous considérons la mesure de l'ensemble des points de qui peuvent être bien approchés par l'orbite de , c'est-à-dire l'ensemble
Accepted:
Published online:
Bao-Wei Wang 1; Jun Wu 1; Jian Xu 1
@article{CRMATH_2017__355_7_738_0, author = {Bao-Wei Wang and Jun Wu and Jian Xu}, title = {Dynamical covering problems on the triadic {Cantor} set}, journal = {Comptes Rendus. Math\'ematique}, pages = {738--743}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.05.014}, language = {en}, }
Bao-Wei Wang; Jun Wu; Jian Xu. Dynamical covering problems on the triadic Cantor set. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 738-743. doi : 10.1016/j.crma.2017.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.014/
[1] Heterogeneous ubiquitous systems in and Hausdorff dimension, Bull. Braz. Math. Soc., Volume 38 (2007) no. 3, pp. 467-515
[2] Measure Theoretic Laws for Lim Sup Sets, Memoirs of the AMS, vol. 179, 2006 (No. 846, x+91 pp)
[3] A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures, Ann. Math. (2), Volume 164 (2006) no. 3, pp. 971-992
[4] Diophantine approximation and Cantor sets, Math. Ann., Volume 341 (2008), pp. 677-684
[5] Metric Diophantine approximation on the middle-third Cantor set, J. Eur. Math. Soc., Volume 18 (2016), pp. 1233-1272
[6] Dynamical Borel–Cantelli lemmas for Gibbs measures, Isr. J. Math., Volume 122 (2001), pp. 1-27
[7] On covering a circle by randomly placed arcs, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 199-203
[8] A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proc. Lond. Math. Soc., Volume 107 (2013) no. 5, pp. 1173-1219
[9] Dimensions of random covering sets in Riemann manifolds, 2015 | arXiv
[10] Random affine code tree fractals and Falcorner–Sloan condition, Ergod. Theory Dyn. Syst., Volume 36 (2016) no. 5, pp. 1516-1533
[11] Some Random Series of Functions, Cambridge University Press, Cambridge, UK, 1985
[12] On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann., Volume 338 (2007), pp. 97-118
[13] Diophantine approximation of orbits in expanding Markov systems, Ergod. Theory Dyn. Syst., Volume 33 (2013) no. 2, pp. 585-608
[14] Some suggestions for further research, Bull. Aust. Math. Soc., Volume 29 (1984), pp. 101-108
[15] Some metrical theorems in number theory, Pac. J. Math., Volume 20 (1967), pp. 109-127
[16] Covering the circle with random arcs, Isr. J. Math., Volume 11 (1972), pp. 328-345
[17] Metric Theory of Diophantine Approximation, V.H. Winston & Sons, Washington, DC, 1979 (translated by R.A. Silverman)
Cited by Sources:
Comments - Policy