[Suites pleinement oscillantes et limite des moyennes multi-ergodiques pondérées]
Nous montrons que les suites pleinement oscillantes sont orthogonales aux réalisations d'une application affine d'entropie nulle sur un groupe abélien compact. Ceci est plus que ce que demande la conjecture de Sarnak à ces systèmes dynamiques.
We prove that fully oscillating sequences are orthogonal to multiple ergodic realizations of affine maps of zero entropy on compact Abelian groups. It is more than what Sarnak's conjecture requires for these dynamical systems.
Accepté le :
Publié le :
Aihua Fan 1, 2
@article{CRMATH_2017__355_8_866_0, author = {Aihua Fan}, title = {Fully oscillating sequences and weighted multiple ergodic limit}, journal = {Comptes Rendus. Math\'ematique}, pages = {866--870}, publisher = {Elsevier}, volume = {355}, number = {8}, year = {2017}, doi = {10.1016/j.crma.2017.07.008}, language = {en}, }
Aihua Fan. Fully oscillating sequences and weighted multiple ergodic limit. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 866-870. doi : 10.1016/j.crma.2017.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.008/
[1] Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals, Int. Math. Res. Not., Volume 2017 (2017) no. 14, pp. 4350-4368
[2] 0–1 sequences of the Thue–Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., Volume 144 (2016) no. 1, pp. 161-176
[3] S. Akiyama, Y.P. Jiang, Higher order oscillation and uniform distribution, preprint.
[4] Topological entropy of distal affine transformations on compact abelian groups, J. Math. Soc. Jpn., Volume 23 (1971), pp. 11-17
[5] On some infinite series involving arithmetical functions (II), Q. J. Math., Volume 8 (1937), pp. 313-320
[6] Isomorphic extensions and applications, Topol. Methods Nonlinear Anal., Volume 48 (2016) no. 1, pp. 321-338
[7] A.H. Fan, Oscillating sequences of higher orders and topological systems of quasi-discrete spectrum, preprint.
[8] Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov stability (Ergod. Theory Dyn. Syst. doi:) | DOI
[9] S. Ferenzi, J. Kulaga-Przymus, M. Lemańczyk, C. Mauduit, Substitutions and Möbius disjointness, preprint, 2015.
[10] Minimal dynamical systems with quasi-discrete spectrum, J. Lond. Math. Soc., Volume 40 (1965), pp. 309-323
[11] Affine transformations with quasi-discrete spectrum (I), J. Lond. Math. Soc., Volume 41 (1966), pp. 88-96
[12] Affine transformations with quasi-discrete spectrum (II), J. Lond. Math. Soc., Volume 41 (1966), pp. 529-530
[13] Additive Theory of Prime Numbers, Transl. Math. Monogr., vol. 13, American Mathematical Society, Providence, RI, USA, 1966
[14] W. Huang, Z. Lian, S. Shao, X. Ye, Sequences from zero entropy noncommutative toral automorphisms and Sarnak conjecture, preprint.
[15] W. Huang, Z.R. Wang, G.H. Zhang, Möbius disjointness for topological models of ergodic systems with discrete spectrum, preprint.
[16] J. Konieczny, Gowers norms for the Thue–Morse and Rudin–Schapiro sequences, preprint.
[17] The Möbius function and continuous extensions of rotations, Monatshefte Math., Volume 178 (2015) no. 4, pp. 553-582
[18] The Möbius function and distal flows, Duke Math. J., Volume 164 (2015) no. 7, pp. 1353-1399
[19] Three Lectures on the Möbius Function, Randomness and Dynamics, IAS Lect. Notes, 2009 http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf
[20] Möbius randomness and dynamics, Not. S. Afr. Math. Soc., Volume 43 (2012), pp. 89-97
[21] R.X. Shi, Equivalent definitions of oscillating sequences of higher orders, preprint.
[22] Higher Order Fourier Analysis, Grad. Stud. Math., vol. 142, American Mathematical Society, Providence, RI, USA, 2012
[23] Z.R. Wang, Möbius disjointness for analytic skew products, preprint.
Cité par Sources :
Commentaires - Politique