[Densité des fonctions dans l'algèbre du disque dans les espaces de de Branges–Rovnyak]
On démontre que les fonctions analytiques dans le disque unité et continues dans le disque fermé sont denses dans l'espace de Branges–Rovnyak généré par un point extrémal de la boule unité de
We prove that functions analytic in the unit disk and continuous up to the boundary are dense in the de Branges–Rovnyak spaces induced by the extreme points of the unit ball of
Accepté le :
Publié le :
Alexandru Aleman 1 ; Bartosz Malman 1
@article{CRMATH_2017__355_8_871_0, author = {Alexandru Aleman and Bartosz Malman}, title = {Density of disk algebra functions in de {Branges{\textendash}Rovnyak} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {871--875}, publisher = {Elsevier}, volume = {355}, number = {8}, year = {2017}, doi = {10.1016/j.crma.2017.07.015}, language = {en}, }
Alexandru Aleman; Bartosz Malman. Density of disk algebra functions in de Branges–Rovnyak spaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 871-875. doi : 10.1016/j.crma.2017.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.015/
[1] Invariant subspaces of shift operators. An axiomatic approach, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 113 (1981), pp. 7-26 (264, English translation in J. Sov. Math., 22, 1983, pp. 1695-1708)
[2] The Hardy space of a slit domain, Frontiers in Mathematics, Birkhäuser Verlag, Basel, Switzerland, 2009
[3] Beurling's theorem for the Bergman space, Acta Math., Volume 177 (1996), pp. 275-310
[4] Theory of Linear Operations, N.-Holl. Math. Libr., vol. 38, North-Holland Publishing Co., Amsterdam, 1987
[5] Some open problems in complex and harmonic analysis: report on problem session held during the conference Completeness problems, Carleson measures, and spaces of analytic functions, Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions, Contemp. Math., vol. 679, American Mathematical Society, Providence, RI, USA, 2016, pp. 207-217
[6] The Cauchy Transform, Math. Surv. Monogr., vol. 125, American Mathematical Society, Providence, RI, USA, 2006
[7] Constructive approximation in de Branges–Rovnyak spaces, Constr. Approx., Volume 44 (2016), pp. 269-281
[8] The Uncertainty Principle in Harmonic Analysis, Encyclopaedia Math. Sci., vol. 72, Springer, Berlin, 1995
[9] Sub-Hardy Hilbert Spaces in the Unit Disk, Univ. Arkansas Lect. Notes Math. Sci., vol. 10, John Wiley & Sons, Inc., New York, 1994
[10] Properties of multipliers of integrals of Cauchy–Stieltjes type, and some problems of factorization of analytic functions, Drogobych, 1974, Volume 115 (1976), pp. 5-39 (in Russian); English translation in Transl. Amer. Math. Soc. (2), 1980, pp. 1-32
- Regular Functions in de Branges-Rovnyak Spaces, Operator Theory (2025), p. 1 | DOI:10.1007/978-3-0348-0692-3_110-1
- Constructions of some families of smooth Cauchy transforms, Canadian Journal of Mathematics, Volume 76 (2024) no. 1, p. 319 | DOI:10.4153/s0008414x23000081
- Cyclic inner functions in growth classes and applications to approximation problems, Canadian Mathematical Bulletin, Volume 66 (2023) no. 3, p. 749 | DOI:10.4153/s0008439522000704
- On the problem of smooth approximations in H(b) and connections to subnormal operators, Journal of Functional Analysis, Volume 284 (2023) no. 5, p. 109803 | DOI:10.1016/j.jfa.2022.109803
- Monotonicity of Certain Left and Right Riemann Sums, Recent Developments in Operator Theory, Mathematical Physics and Complex Analysis, Volume 290 (2023), p. 89 | DOI:10.1007/978-3-031-21460-8_3
- An abstract approach to approximation in spaces of pseudocontinuable functions, Proceedings of the American Mathematical Society (2022) | DOI:10.1090/proc/15864
- Hilbert spaces of analytic functions with a contractive backward shift, Journal of Functional Analysis, Volume 277 (2019) no. 1, p. 157 | DOI:10.1016/j.jfa.2018.08.019
Cité par 7 documents. Sources : Crossref
Commentaires - Politique