[Estimations pondérées précisées associées à un seul supremum]
Nous étudions dans cette note les estimations pondérées précisées associées à un seul supremum. En particulier, nous résolvons par l'affirmative un probléme ouvert posé par Lerner et Moen. Nous étendons également le résultat aux opérateurs intégraux singuliers homogènes rugueux.
In this note, we study the sharp weighted estimate involving one supremum. In particular, we give a positive answer to an open question raised by Lerner and Moen. We also extend the result to rough homogeneous singular integral operators.
Accepté le :
Publié le :
Kangwei Li 1
@article{CRMATH_2017__355_8_906_0, author = {Kangwei Li}, title = {Sharp weighted estimates involving one supremum}, journal = {Comptes Rendus. Math\'ematique}, pages = {906--909}, publisher = {Elsevier}, volume = {355}, number = {8}, year = {2017}, doi = {10.1016/j.crma.2017.07.016}, language = {en}, }
Kangwei Li. Sharp weighted estimates involving one supremum. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 906-909. doi : 10.1016/j.crma.2017.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.016/
[1] A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284
[2] A pointwise estimate for positive dyadic shifts and some applications, Math. Ann., Volume 365 (2016), pp. 1111-1135
[3] Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal., Volume 260 (2011), pp. 1886-1901
[4] Maximal and singular integral operators via Fourier transform estimates, Invent. Math., Volume 84 (1986), pp. 541-561
[5] The sharp weighted bound for general Calderón–Zygmund operators, Ann. of Math. (2), Volume 175 (2012) no. 3, pp. 1473-1506
[6] The – inequality for general Calderón–Zygmund operators, Indiana Univ. Math. J., Volume 61 (2012) no. 6, pp. 2041-2092
[7] Sharp weighted bounds involving , Anal. PDE, Volume 6 (2013) no. 4, pp. 777-818
[8] Quantitative weighted estimates for rough homogeneous singular integrals, Isr. J. Math., Volume 218 (2017), pp. 133-164
[9] An elementary proof of the bound, Isr. J. Math., Volume 217 (2017), pp. 181-195
[10] Mixed – inequalities for classical singular integrals and Littlewood–Paley operators, J. Geom. Anal., Volume 23 (2013) no. 3, pp. 1343-1354
[11] On pointwise estimates involving sparse operators, N.Y. J. Math., Volume 22 (2016), pp. 341-349
[12] A weak type estimate for rough singular integrals (preprint, available at) | arXiv
[13] Mixed – estimates with one supremum, Stud. Math., Volume 219 (2013) no. 3, pp. 247-267
[14] Intuitive dyadic calculus: the basics, 2015 (preprint, available at) | arXiv
[15] Two weight inequalities for bilinear forms, Collect. Math., Volume 68 (2017), pp. 129-144
[16] Weighted norm inequalities for rough singular integral operators (preprint, available at) | arXiv
Cité par Sources :
Commentaires - Politique