We study birational geometry of the moduli space of stable sheaves on a quadric surface with Hilbert polynomial and . We describe a birational map between the moduli space and a projective bundle over a Grassmannian as a composition of smooth blow-ups/downs.
Dans cette note, nous étudions la géométrie birationnelle de l'espace des modules des faisceaux stables sur une quadrique, de polynôme de Hilbert et de classes de Chern . Pour cela, nous donnons une application birationnelle entre l'espace des modules et un fibré projectif au dessus d'une grassmanienne, qui est une composition d'éclatements et de contractions lisses.
Accepted:
Published online:
Kiryong Chung 1; Han-Bom Moon 2
@article{CRMATH_2017__355_10_1082_0, author = {Kiryong Chung and Han-Bom Moon}, title = {Birational geometry of the moduli space of pure sheaves on quadric surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {1082--1088}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.09.005}, language = {en}, }
Kiryong Chung; Han-Bom Moon. Birational geometry of the moduli space of pure sheaves on quadric surface. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1082-1088. doi : 10.1016/j.crma.2017.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.005/
[1] The birational geometry of the Hilbert scheme of points on surfaces, Birational Geometry, Rational Curves, and Arithmetic, Springer, New York, 2013, pp. 15-55
[2] Enumerative Invariants for Local Calabi–Yau Threefolds, University of Illinois, Champaign, IL, USA, 2012 (Ph.D. Thesis)
[3] Moduli spaces of α-stable pairs and wall-crossing on , J. Math. Soc. Jpn., Volume 68 (2016) no. 2, pp. 685-789
[4] Moduli of sheaves supported on quartic space curves, Mich. Math. J., Volume 65 (2016) no. 3, pp. 637-671
[5] Chow ring of the moduli space of stable sheaves supported on quartic curves, Q. J. Math., Volume 68 (Sep. 2017) no. 3, pp. 851-887
[6] Supplement to “On the inverse of monoidal transformation”, Publ. Res. Inst. Math. Sci., Volume 7 (1971–1972), pp. 637-644
[7] Espaces de modules de systèmes cohérents, Int. J. Math., Volume 9 (1998) no. 5, pp. 545-598
[8] The Geometry of Moduli Spaces of Sheaves, Cambridge Math. Lib., Cambridge University Press, Cambridge, UK, 2010
[9] Moduli of representations of finite-dimensional algebras, Q. J. Math. Oxford Ser. (2), Volume 45 (1994) no. 180, pp. 515-530
[10] Birational Geometry of Algebraic Varieties, Camb. Tracts Math., vol. 134, Cambridge University Press, Cambridge, 1998
[11] Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roum. Math. Pures Appl., Volume 38 (1993) no. 7–8, pp. 635-678
[12] Systèmes cohérents et structures de niveau, Astérisque (1993) no. 214, p. 143
[13] Moduli of sheaves supported on curves of genus two in a quadric surface, 2016 | arXiv
[14] On a family of algebraic vector bundles, Number Theory, Algebraic Geometry, and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 95-149
Cited by Sources:
Comments - Policy