[Deuxième déterminant de Hankel pour les fonctions presque convexes]
Aucune estimation précise de l'expression
De plus, nous formulons quelques remarques à propos du deuxième déterminant de Hankel pour la classe
So far, the sharp bound of the expression
Moreover, some remarks on the second Hankel determinant for the class
Accepté le :
Publié le :
Dorina Răducanu 1 ; Paweł Zaprawa 2
@article{CRMATH_2017__355_10_1063_0, author = {Dorina R\u{a}ducanu and Pawe{\l} Zaprawa}, title = {Second {Hankel} determinant for close-to-convex functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1063--1071}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.09.006}, language = {en}, }
Dorina Răducanu; Paweł Zaprawa. Second Hankel determinant for close-to-convex functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1063-1071. doi : 10.1016/j.crma.2017.09.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.006/
[1] Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., Volume 26 (2013) no. 1, pp. 103-107
[2] Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., Volume 52 (2015) no. 6, pp. 1139-1148
[3] A coefficient inequality for Bazilevic functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, Volume 27 (1973), pp. 5-12
[4] Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933), pp. 85-89
[5] On the definition of a close-to-convex function, Int. J. Math. Math. Sci., Volume 1 (1978), pp. 125-132
[6] On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 3 (1968) no. 18, pp. 77-94
[7] Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., Volume 7 (2006) no. 2, pp. 1-5
[8] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Volume 1 (2007) no. 13, pp. 619-625
[9] On certain coefficients of univalent functions, Analytic Functions, Princeton Math. Ser., vol. 24, 1960, pp. 159-194
[10] A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 8-12
[11] On the Fekete–Szegõ problem for close-to-convex functions, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 89-95
[12] Koebe domains for certain classes of analytic functions, J. Anal. Math., Volume 18 (1967), pp. 185-195
[13] Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013)
[14] Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., Volume 85 (1982), pp. 225-230
[15] The second Hankel determinant of functions convex in one direction, Int. J. Math. Anal., Volume 10 (2016) no. 9, pp. 423-428
[16] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in
[17] On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34
[18] On certain analytic functions related with strongly close-to-convex functions, Appl. Math. Comput., Volume 197 (2008) no. 1, pp. 149-157
[19] On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122
[20] On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112
[21] Bounds on third Hankel determinant for close-to-convex functions, Acta Univ. Sapientiae Math., Volume 7 (2015) no. 2, pp. 210-219
[22] Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., Volume 2013 (2013)
[23] Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016)
[24] Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., Volume 14 (2017) no. 1
[25] P. Zaprawa, On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., , in press. | DOI
Cité par Sources :
Commentaires - Politique