[Deuxième déterminant de Hankel pour les fonctions presque convexes]
Aucune estimation précise de l'expression pour la classe des fonctions presque convexes n'était connue jusqu'à présent. Dans cette Note, nous présentons des estimations de cette expression, nommée deuxième déterminant de Hankel pour la classe , c'est-à-dire la sous-classe , composée des fonctions f qui vérifient, dans le disque unité, l'inégalité avec une fonction étoilée g.
De plus, nous formulons quelques remarques à propos du deuxième déterminant de Hankel pour la classe des fonctions univalentes. Nous démontrons que est plus grand que 1.
So far, the sharp bound of the expression for the class of close-to-convex functions has remained unknown. In this paper, we obtain the estimation of this expression, called the second Hankel determinant, for , i.e. the subset of consisting of functions f that satisfy in the unit disk the inequality with a starlike function g.
Moreover, some remarks on the second Hankel determinant for the class of univalent functions are made. It is proven that is greater than 1.
Accepté le :
Publié le :
Dorina Răducanu 1 ; Paweł Zaprawa 2
@article{CRMATH_2017__355_10_1063_0, author = {Dorina R\u{a}ducanu and Pawe{\l} Zaprawa}, title = {Second {Hankel} determinant for close-to-convex functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1063--1071}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.09.006}, language = {en}, }
Dorina Răducanu; Paweł Zaprawa. Second Hankel determinant for close-to-convex functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1063-1071. doi : 10.1016/j.crma.2017.09.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.006/
[1] Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., Volume 26 (2013) no. 1, pp. 103-107
[2] Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., Volume 52 (2015) no. 6, pp. 1139-1148
[3] A coefficient inequality for Bazilevic functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, Volume 27 (1973), pp. 5-12
[4] Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933), pp. 85-89
[5] On the definition of a close-to-convex function, Int. J. Math. Math. Sci., Volume 1 (1978), pp. 125-132
[6] On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 3 (1968) no. 18, pp. 77-94
[7] Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., Volume 7 (2006) no. 2, pp. 1-5
[8] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Volume 1 (2007) no. 13, pp. 619-625
[9] On certain coefficients of univalent functions, Analytic Functions, Princeton Math. Ser., vol. 24, 1960, pp. 159-194
[10] A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 8-12
[11] On the Fekete–Szegõ problem for close-to-convex functions, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 89-95
[12] Koebe domains for certain classes of analytic functions, J. Anal. Math., Volume 18 (1967), pp. 185-195
[13] Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013)
[14] Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., Volume 85 (1982), pp. 225-230
[15] The second Hankel determinant of functions convex in one direction, Int. J. Math. Anal., Volume 10 (2016) no. 9, pp. 423-428
[16] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in , Arch. Ration. Mech. Anal., Volume 32 (1969), pp. 100-112
[17] On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34
[18] On certain analytic functions related with strongly close-to-convex functions, Appl. Math. Comput., Volume 197 (2008) no. 1, pp. 149-157
[19] On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122
[20] On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112
[21] Bounds on third Hankel determinant for close-to-convex functions, Acta Univ. Sapientiae Math., Volume 7 (2015) no. 2, pp. 210-219
[22] Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., Volume 2013 (2013)
[23] Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016)
[24] Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., Volume 14 (2017) no. 1
[25] P. Zaprawa, On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., , in press. | DOI
Cité par Sources :
Commentaires - Politique