Comptes Rendus
Complex analysis
On the Erdös–Lax inequality concerning polynomials
Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1055-1062.

Let P(z) be a polynomial of degree n and for any complex number α, let DαP(z):=nP(z)+(αz)P(z) denote the polar derivative of P(z) with respect to α. In this paper, we present an integral inequality for the polar derivative of a polynomial. Our theorem includes as special cases several interesting generalisations and refinements of Erdöx–Lax theorem.

Soit P(z) un polynôme de degré n. Pour tout nombre complexe α, notons DαP(z):=nP(z)+(αz)P(z) la dérivée polaire de P(z) relative à α. Dans cette Note, nous présentons une inégalité intégrale pour la dérivée polaire. Notre théorème contient comme cas particuliers plusieurs généralisations et raffinements intéressants du théorème d'Erdös et Lax.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.09.017

Abdullah Mir 1; Imtiaz Hussain 1

1 Department of Mathematics, University of Kashmir, Srinagar, 190006, India
@article{CRMATH_2017__355_10_1055_0,
     author = {Abdullah Mir and Imtiaz Hussain},
     title = {On the {Erd\"os{\textendash}Lax} inequality concerning polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1055--1062},
     publisher = {Elsevier},
     volume = {355},
     number = {10},
     year = {2017},
     doi = {10.1016/j.crma.2017.09.017},
     language = {en},
}
TY  - JOUR
AU  - Abdullah Mir
AU  - Imtiaz Hussain
TI  - On the Erdös–Lax inequality concerning polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1055
EP  - 1062
VL  - 355
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2017.09.017
LA  - en
ID  - CRMATH_2017__355_10_1055_0
ER  - 
%0 Journal Article
%A Abdullah Mir
%A Imtiaz Hussain
%T On the Erdös–Lax inequality concerning polynomials
%J Comptes Rendus. Mathématique
%D 2017
%P 1055-1062
%V 355
%N 10
%I Elsevier
%R 10.1016/j.crma.2017.09.017
%G en
%F CRMATH_2017__355_10_1055_0
Abdullah Mir; Imtiaz Hussain. On the Erdös–Lax inequality concerning polynomials. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1055-1062. doi : 10.1016/j.crma.2017.09.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.017/

[1] V.V. Arestov On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 45 (1981), pp. 3-22

[2] A. Aziz Inequalities for the polar derivative of a polynomial, J. Approx. Theory, Volume 55 (1988), pp. 183-193

[3] A. Aziz; Q.M. Dawood Inequalities for a polynomial and its derivative, J. Approx. Theory, Volume 54 (1988), pp. 306-313

[4] A. Aziz; N.A. Rather On an inequality concerning the polar derivative of a polynomial, Proc. Indian Acad. Sci. Math. Sci., Volume 117 (2003), pp. 349-357

[5] A. Aziz; N.A. Rather Some Zygmund type Lp inequalities for polynomials, J. Math. Anal. Appl., Volume 289 (2004), pp. 14-29

[6] N.G. de Bruijn Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetnesch Proc., Volume 50 (1947), pp. 1265-1272

[7] P.D. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 509-513

[8] A. Liman; R.N. Mohapatra; W.M. Shah Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, Volume 6 (2012), pp. 1199-1209

[9] G.V. Milovanović; D.S. Mitrinović; T.M. Rassias Topics in Polynomials, Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994

[10] A. Mir; S.A. Baba Some integral inequalities for the polar derivative of a polynomial, Anal. Theory Appl., Volume 4 (2011), pp. 340-350

[11] Q.I. Rahman; G. Schmeisser Lp inequalities for polynomials, J. Approx. Theory, Volume 53 (1988), pp. 26-32

[12] Q.I. Rahman; G. Schmeisser Analytic Theory of Polynomials, Oxford University Press Inc., New York, 2002

[13] N.A. Rather Lp inequalities for the polar derivative of a polynomial, J. Inequal. Pure Appl. Math., Volume 9 (2008) no. 4 (Art. 103, 10 p)

[14] A. Zireh On the polar derivative of a polynomial, Bull. Iran. Math. Soc., Volume 40 (2014), pp. 967-976

[15] A. Zygmund A remark on conjugate series, Proc. Lond. Math. Soc., Volume 34 (1932), pp. 392-400

Cited by Sources:

Comments - Policy