In the present paper, we show that a correctly chosen Legendre transform of the Bellman functions of martingale problems give us the right tool to prove isoperimetric inequalities on Hamming cube independent of the dimension. We illustrate the power of this “dual function approach” by proving certain Poincaré inequalities on Hamming cube and by improving a particular inequality of Beckner on the Hamming cube.
Dans le présent article, nous montrons qu'une transformée de Legendre adéquate des fonctions de Bellman, issues de problèmes de martingale, fournit le bon outil pour démontrer les inégalités isopérimetriques sur le cube de Hamming, indépendamment de la dimension. Nous illustrons la puissance de cette « approche par fonction duale » en démontrant une inégalité de Poincaré et en améliorant une inégalité de Beckner sur le cube de Hamming.
Accepted:
Published online:
Paata Ivanisvili 1, 2, 3, 4; Fedor Nazarov 1; Alexander Volberg 5
@article{CRMATH_2017__355_10_1072_0, author = {Paata Ivanisvili and Fedor Nazarov and Alexander Volberg}, title = {Hamming cube and martingales}, journal = {Comptes Rendus. Math\'ematique}, pages = {1072--1076}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.09.013}, language = {en}, }
Paata Ivanisvili; Fedor Nazarov; Alexander Volberg. Hamming cube and martingales. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1072-1076. doi : 10.1016/j.crma.2017.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.013/
[1] Poincaré type inequalities on the discrete cube and in the CAR algebra, Probab. Theory Relat. Fields, Volume 141 (2008) no. 3–4, pp. 569-602
[2] Discrete isoperimetric and Poincaré-type inequalities, Probab. Theory Relat. Fields, Volume 114 (1999), pp. 245-277
[3] Sharp inequalities for martingales and stochastic integrals, Astérisque, Volume 157–158 (1988), pp. 75-94
[4] On the norms of stochastic integrals and other martingales, Duke Math. J., Volume 43 (1976), pp. 697-704
[5] Convex Analysis and Variational Problems, North-Holland Publishing Company, Amsterdam, 1976
[6] Improving Beckner's bound via Hermite functions, Anal. PDE, Volume 10 (2017) no. 4, pp. 929-942
[7] Poincaré inequality 3/2 on the Hamming cube (preprint) | arXiv
[8] Square function and the Hamming cube: duality (pp. 1–14) | arXiv
[9] Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity, Geom. Funct. Anal., Volume 3 (1993) no. 3, pp. 295-314
[10] Some Sharp Inequalities for Conditionally Symmetric Martingales, University of Illinois at Urbana-Champaign, 1989 (Ph.D. Thesis)
[11] Sharp square-function inequalities for conditionally symmetric martingales, Trans. Am. Math. Soc., Volume 328 (1991) no. 1, pp. 393-419
Cited by Sources:
☆ We acknowledge the support of the following grants: FN – the grant from DMS of NSF, AV – NSF grant DMS-1600075. The results of this paper were obtained at the MSRI in Berkeley, California, 2017 program Harmonic Analysis under the NSF grant No. DMS-1440140.
Comments - Policy