We establish a sufficient condition for the existence of solutions to the incompressible Navier–Stokes equations, with singular time-dependent external forces defined in terms of capacity .
Nous établissons une condition suffisante pour l'existence de solutions aux équations de Navier–Stokes incompressibles, avec force externe dépendant du temps et singulière, dans un espace défini en termes de la capacité .
Accepted:
Published online:
Nguyen Anh Dao 1; Quoc-Hung Nguyen 2
@article{CRMATH_2017__355_9_966_0, author = {Nguyen Anh Dao and Quoc-Hung Nguyen}, title = {Nonstationary {Navier{\textendash}Stokes} equations with singular time-dependent external forces}, journal = {Comptes Rendus. Math\'ematique}, pages = {966--972}, publisher = {Elsevier}, volume = {355}, number = {9}, year = {2017}, doi = {10.1016/j.crma.2017.09.007}, language = {en}, }
TY - JOUR AU - Nguyen Anh Dao AU - Quoc-Hung Nguyen TI - Nonstationary Navier–Stokes equations with singular time-dependent external forces JO - Comptes Rendus. Mathématique PY - 2017 SP - 966 EP - 972 VL - 355 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2017.09.007 LA - en ID - CRMATH_2017__355_9_966_0 ER -
Nguyen Anh Dao; Quoc-Hung Nguyen. Nonstationary Navier–Stokes equations with singular time-dependent external forces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 966-972. doi : 10.1016/j.crma.2017.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.007/
[1] Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233-2247
[2] Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math., 2002
[3] Strong -solutions of the Navier–Stokes equation in , with applications to weak solutions, Math. Z., Volume 187 (1984), pp. 471-480
[4] Strong solutions of the Navier–Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. (N.S.), Volume 22 (1992), pp. 127-155
[5] The stability of small stationary solutions in Morrey spaces of the Navier–Stokes equation, Indiana Univ. Math. J., Volume 44 (1995), pp. 1307-1335
[6] Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22-35
[7] A note on the Oseen kernels, Advances in Phase Space Analysis of Partial Differential Equations, Prog. Nonlinear Differ. Equ. Appl., vol. 78, Birkhäuser, 2009, pp. 161-170
[8] Potential estimates and quasilinear equations with measure data | arXiv
[9] Stationary Navier–Stokes equations with critically singular forces: existence and stability results, Adv. Math., Volume 241 (2013), pp. 137-161
[10] The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser, 2001
[11] Analysis of Morrey spaces and applications to Navier–Stokes and other evolution equations, Commun. Partial Differ. Equ., Volume 17 (1992), pp. 1407-1456
Cited by Sources:
Comments - Policy