Logic/Topology
Restricting uniformly open surjections
Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 925-928.

We employ the theory of elementary submodels to improve a recent result by Aron, Jaramillo and Le Donne (2017) [1] concerning restricting uniformly open, continuous surjections to smaller subspaces where they remain surjective. To wit, suppose that X and Y are metric spaces and let $f:X→Y$ be a continuous surjection. If X is complete and f is uniformly open, then X contains a closed subspace Z with the same density as Y such that f restricted to Z is still uniformly open and surjective. Moreover, if X is a Banach space, then Z may be taken to be a closed linear subspace. A counterpart of this theorem for uniform spaces is also established.

Nous utilisons la théorie des sous-modèles élémentaires pour améliorer un résultat récent d'Aron, Jaramillo et Le Donne (2017) [1] sur les restrictions de surjections continues, uniformément ouvertes, à des sous-espaces où elles restent surjectives. Précisément, supposons que X et Y sont des espaces métriques et $f:X→Y$ une surjection continue. Si X est complet et f est uniformément ouverte, alors X contient un sous-espace fermé Z de même densité que Y, tel que la restriction de f à Z est encore uniformément ouverte et surjective. De plus, si X est un espace de Banach, alors Z peut être pris sous-espace linéaire fermé. La contrepartie de ce théorème pour les espaces uniformes est aussi démontrée.

Accepted:
Published online:
DOI: 10.1016/j.crma.2017.09.008

Tomasz Kania 1, 2; Martin Rmoutil 1, 3

1 Mathematics Institute, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL, United Kingdom
2 Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
3 Department of Mathematics Education, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic
@article{CRMATH_2017__355_9_925_0,
author = {Tomasz Kania and Martin Rmoutil},
title = {Restricting uniformly open surjections},
journal = {Comptes Rendus. Math\'ematique},
pages = {925--928},
publisher = {Elsevier},
volume = {355},
number = {9},
year = {2017},
doi = {10.1016/j.crma.2017.09.008},
language = {en},
}
TY  - JOUR
AU  - Tomasz Kania
AU  - Martin Rmoutil
TI  - Restricting uniformly open surjections
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 925
EP  - 928
VL  - 355
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2017.09.008
LA  - en
ID  - CRMATH_2017__355_9_925_0
ER  - 
%0 Journal Article
%A Tomasz Kania
%A Martin Rmoutil
%T Restricting uniformly open surjections
%J Comptes Rendus. Mathématique
%D 2017
%P 925-928
%V 355
%N 9
%I Elsevier
%R 10.1016/j.crma.2017.09.008
%G en
%F CRMATH_2017__355_9_925_0
Tomasz Kania; Martin Rmoutil. Restricting uniformly open surjections. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 925-928. doi : 10.1016/j.crma.2017.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.008/

[1] R. Aron; J.A. Jaramillo; E. Le Donne Smooth surjections and surjective restrictions, Ann. Acad. Sci. Fenn., Math., Volume 42 (2017), pp. 525-534

[2] R. Aron; J.A. Jaramillo; T. Ransford Smooth surjections without surjective restrictions, J. Geom. Anal., Volume 23 (2013), pp. 2081-2090

[3] I.M. Dektjarev A closed graph theorem for ultracomplete spaces, Dokl. Akad. Nauk Sov., Volume 154 (1964), pp. 771-773 (in Russian)

[4] Sz. Draga; T. Kania When is multiplication in a Banach algebra open?, 2017 (preprint, 15 p.) | arXiv

[5] I.M. James Introduction to Uniform Spaces, London Mathematical Society Lecture Note Series, vol. 144, Cambridge University Press, Cambridge, UK, 1990

[6] W. Just; M. Weese Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician, Amer. Math. Soc., Providence, RI, USA, 1997

[7] K. Kunen Set Theory. An Introduction to Independence Proofs, Studies Logic Found. Math., vol. 102, North-Holland, Amsterdam, 1980

[8] R. Meise; D. Vogt Introduction to Functional Analysis, Clarendon Press, Oxford, UK, 1997

[9] E. Michael Topologies on spaces of subsets, Trans. Amer. Math. Soc., Volume 71 (1951), pp. 152-182

[10] J. Schauder Über die Umkehrung linearer, stetiger Funktionaloperatoren, Stud. Math., Volume 2 (1930), pp. 1-6

Cited by Sources:

The authors acknowledge with thanks funding received from the European Research Council; ERC Grant Agreement No. 291497.