[Convergence presque uniforme dans le théorème ergodique de Dunford–Schwartz non commutatif]
Cette Note donne une réponse positive à la question suivante : les moyennes de Cesáro ergodiques engendrées par un opérateur de Dunford–Schwartz dans un espace non commutatif
This article gives an affirmative solution to the problem whether the ergodic Cesáro averages generated by a positive Dunford–Schwartz operator in a noncommutative space
Accepté le :
Publié le :
Semyon Litvinov 1
@article{CRMATH_2017__355_9_977_0, author = {Semyon Litvinov}, title = {Almost uniform convergence in the noncommutative {Dunford{\textendash}Schwartz} ergodic theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {977--980}, publisher = {Elsevier}, volume = {355}, number = {9}, year = {2017}, doi = {10.1016/j.crma.2017.09.014}, language = {en}, }
Semyon Litvinov. Almost uniform convergence in the noncommutative Dunford–Schwartz ergodic theorem. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 977-980. doi : 10.1016/j.crma.2017.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.014/
[1] Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators, Methods Funct. Anal. Topol., Volume 12 (2006) no. 2, pp. 124-130
[2] Ergodic theorems in fully symmetric spaces of τ-measurable operators, Stud. Math., Volume 288 (2015) no. 2, pp. 177-195
[3] A few remarks in noncommutative ergodic theory, J. Oper. Theory, Volume 53 (2005) no. 2, pp. 331-350
[4] Theorems of convergence almost everywhere in von Neumann algebras, J. Oper. Theory, Volume 6 (1981), pp. 233-311
[5] Almost sure convergence theorems in von Neumann algebras, Isr. J. Math., Volume 76 (1991), pp. 161-182
[6] Strong Limit Theorems in Noncommutative Probability, Lect. Notes in Math., vol. 1110, Springer-Verlag, Berlin, 1985
[7] Noncommutative maximal ergodic theorems, J. Amer. Math. Soc., Volume 20 (2007) no. 2, pp. 385-439
[8] A non-commutative individual ergodic theorem, Invent. Math., Volume 46 (1978), pp. 139-145
[9] Ergodic theorems for convex sets and operator algebras, Invent. Math., Volume 37 (1976), pp. 201-214
[10] Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems, Proc. Amer. Math. Soc., Volume 140 (2012) no. 7, pp. 2401-2409
[11] On individual subsequential ergodic theorem in von Neumann algebras, Stud. Math., Volume 145 (2005), pp. 56-62
[12] On multiparameter weighted ergodic theorem for noncommutative
[13] Algebras of measurable and locally measurable operators, Pratsi Inst. Math. NAN Ukrainy, Volume 69 (2007)
[14] Notes on non-commutative integration, J. Funct. Anal., Volume 15 (1974), pp. 103-116
[15] Ergodic theorems in von Neumann algebras, Acta Sci. Math., Volume 46 (1983), pp. 329-343
[16] Noncommutative
[17] A non-commutative extension of abstract integration, Ann. Math., Volume 57 (1953), pp. 401-457
[18] On a classical scheme in noncommutative multiparameter ergodic theory (M. Schurmann; U. Franz, eds.), Quantum Probability and Infinite Dimensional Analysis, QP-PQ 18, World Scientific, Singapore, 2005, pp. 473-491
[19] Lectures on von Neumann Algebras, Editura Academiei Române, Abacus Press, Bucureşti, 1979
[20] Non-commutative
[21] Ergodic theorems for semifinite von Neumann algebras. I, J. Lond. Math. Soc., Volume 16 (1977) no. 2, pp. 326-332
Cité par Sources :
Commentaires - Politique