[Convergence presque uniforme dans le théorème ergodique de Dunford–Schwartz non commutatif]
Cette Note donne une réponse positive à la question suivante : les moyennes de Cesáro ergodiques engendrées par un opérateur de Dunford–Schwartz dans un espace non commutatif , , convergent-elles presque uniformément (au sens d'Egorov) ? Ce problème remonte au texte original de Yeadon [21], publié en 1977, dans lequel la convergence presque uniforme bilatérale de ces moyennes est établie pour .
This article gives an affirmative solution to the problem whether the ergodic Cesáro averages generated by a positive Dunford–Schwartz operator in a noncommutative space , , converge almost uniformly (in Egorov's sense). This problem goes back to the original paper of Yeadon [21], published in 1977, where bilaterally almost uniform convergence of these averages was established for .
Accepté le :
Publié le :
Semyon Litvinov 1
@article{CRMATH_2017__355_9_977_0, author = {Semyon Litvinov}, title = {Almost uniform convergence in the noncommutative {Dunford{\textendash}Schwartz} ergodic theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {977--980}, publisher = {Elsevier}, volume = {355}, number = {9}, year = {2017}, doi = {10.1016/j.crma.2017.09.014}, language = {en}, }
Semyon Litvinov. Almost uniform convergence in the noncommutative Dunford–Schwartz ergodic theorem. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 977-980. doi : 10.1016/j.crma.2017.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.014/
[1] Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators, Methods Funct. Anal. Topol., Volume 12 (2006) no. 2, pp. 124-130
[2] Ergodic theorems in fully symmetric spaces of τ-measurable operators, Stud. Math., Volume 288 (2015) no. 2, pp. 177-195
[3] A few remarks in noncommutative ergodic theory, J. Oper. Theory, Volume 53 (2005) no. 2, pp. 331-350
[4] Theorems of convergence almost everywhere in von Neumann algebras, J. Oper. Theory, Volume 6 (1981), pp. 233-311
[5] Almost sure convergence theorems in von Neumann algebras, Isr. J. Math., Volume 76 (1991), pp. 161-182
[6] Strong Limit Theorems in Noncommutative Probability, Lect. Notes in Math., vol. 1110, Springer-Verlag, Berlin, 1985
[7] Noncommutative maximal ergodic theorems, J. Amer. Math. Soc., Volume 20 (2007) no. 2, pp. 385-439
[8] A non-commutative individual ergodic theorem, Invent. Math., Volume 46 (1978), pp. 139-145
[9] Ergodic theorems for convex sets and operator algebras, Invent. Math., Volume 37 (1976), pp. 201-214
[10] Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems, Proc. Amer. Math. Soc., Volume 140 (2012) no. 7, pp. 2401-2409
[11] On individual subsequential ergodic theorem in von Neumann algebras, Stud. Math., Volume 145 (2005), pp. 56-62
[12] On multiparameter weighted ergodic theorem for noncommutative -spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 226-232
[13] Algebras of measurable and locally measurable operators, Pratsi Inst. Math. NAN Ukrainy, Volume 69 (2007)
[14] Notes on non-commutative integration, J. Funct. Anal., Volume 15 (1974), pp. 103-116
[15] Ergodic theorems in von Neumann algebras, Acta Sci. Math., Volume 46 (1983), pp. 329-343
[16] Noncommutative -spaces, Handbook of the Geometry of Banach Spaces, vol. 2, 2003, pp. 1459-1517
[17] A non-commutative extension of abstract integration, Ann. Math., Volume 57 (1953), pp. 401-457
[18] On a classical scheme in noncommutative multiparameter ergodic theory (M. Schurmann; U. Franz, eds.), Quantum Probability and Infinite Dimensional Analysis, QP-PQ 18, World Scientific, Singapore, 2005, pp. 473-491
[19] Lectures on von Neumann Algebras, Editura Academiei Române, Abacus Press, Bucureşti, 1979
[20] Non-commutative -spaces, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 91-102
[21] Ergodic theorems for semifinite von Neumann algebras. I, J. Lond. Math. Soc., Volume 16 (1977) no. 2, pp. 326-332
Cité par Sources :
Commentaires - Politique