Comptes Rendus
Functional analysis
Almost uniform convergence in the noncommutative Dunford–Schwartz ergodic theorem
[Convergence presque uniforme dans le théorème ergodique de Dunford–Schwartz non commutatif]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 977-980.

Cette Note donne une réponse positive à la question suivante : les moyennes de Cesáro ergodiques engendrées par un opérateur de Dunford–Schwartz dans un espace non commutatif Lp(M,τ), 1p<, convergent-elles presque uniformément (au sens d'Egorov) ? Ce problème remonte au texte original de Yeadon [21], publié en 1977, dans lequel la convergence presque uniforme bilatérale de ces moyennes est établie pour p=1.

This article gives an affirmative solution to the problem whether the ergodic Cesáro averages generated by a positive Dunford–Schwartz operator in a noncommutative space Lp(M,τ), 1p<, converge almost uniformly (in Egorov's sense). This problem goes back to the original paper of Yeadon [21], published in 1977, where bilaterally almost uniform convergence of these averages was established for p=1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.09.014

Semyon Litvinov 1

1 76 University Drive, Pennsylvania State University, Hazleton 18202, United States
@article{CRMATH_2017__355_9_977_0,
     author = {Semyon Litvinov},
     title = {Almost uniform convergence in the noncommutative {Dunford{\textendash}Schwartz} ergodic theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {977--980},
     publisher = {Elsevier},
     volume = {355},
     number = {9},
     year = {2017},
     doi = {10.1016/j.crma.2017.09.014},
     language = {en},
}
TY  - JOUR
AU  - Semyon Litvinov
TI  - Almost uniform convergence in the noncommutative Dunford–Schwartz ergodic theorem
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 977
EP  - 980
VL  - 355
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2017.09.014
LA  - en
ID  - CRMATH_2017__355_9_977_0
ER  - 
%0 Journal Article
%A Semyon Litvinov
%T Almost uniform convergence in the noncommutative Dunford–Schwartz ergodic theorem
%J Comptes Rendus. Mathématique
%D 2017
%P 977-980
%V 355
%N 9
%I Elsevier
%R 10.1016/j.crma.2017.09.014
%G en
%F CRMATH_2017__355_9_977_0
Semyon Litvinov. Almost uniform convergence in the noncommutative Dunford–Schwartz ergodic theorem. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 977-980. doi : 10.1016/j.crma.2017.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.014/

[1] V. Chilin; S. Litvinov Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators, Methods Funct. Anal. Topol., Volume 12 (2006) no. 2, pp. 124-130

[2] V. Chilin; S. Litvinov Ergodic theorems in fully symmetric spaces of τ-measurable operators, Stud. Math., Volume 288 (2015) no. 2, pp. 177-195

[3] V. Chilin; S. Litvinov; A. Skalski A few remarks in noncommutative ergodic theory, J. Oper. Theory, Volume 53 (2005) no. 2, pp. 331-350

[4] M.S. Goldstein Theorems of convergence almost everywhere in von Neumann algebras, J. Oper. Theory, Volume 6 (1981), pp. 233-311

[5] M.S. Goldstein; G. Grabarnik Almost sure convergence theorems in von Neumann algebras, Isr. J. Math., Volume 76 (1991), pp. 161-182

[6] R. Jajte Strong Limit Theorems in Noncommutative Probability, Lect. Notes in Math., vol. 1110, Springer-Verlag, Berlin, 1985

[7] M. Junge; Q. Xu Noncommutative maximal ergodic theorems, J. Amer. Math. Soc., Volume 20 (2007) no. 2, pp. 385-439

[8] B. Kümmerer A non-commutative individual ergodic theorem, Invent. Math., Volume 46 (1978), pp. 139-145

[9] E.C. Lance Ergodic theorems for convex sets and operator algebras, Invent. Math., Volume 37 (1976), pp. 201-214

[10] S. Litvinov Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems, Proc. Amer. Math. Soc., Volume 140 (2012) no. 7, pp. 2401-2409

[11] S. Litvinov; F. Mukhamedov On individual subsequential ergodic theorem in von Neumann algebras, Stud. Math., Volume 145 (2005), pp. 56-62

[12] F. Mukhamedov; M. Mukhamedov On multiparameter weighted ergodic theorem for noncommutative Lp-spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 226-232

[13] M. Muratov; V. Chilin Algebras of measurable and locally measurable operators, Pratsi Inst. Math. NAN Ukrainy, Volume 69 (2007)

[14] E. Nelson Notes on non-commutative integration, J. Funct. Anal., Volume 15 (1974), pp. 103-116

[15] D. Petz Ergodic theorems in von Neumann algebras, Acta Sci. Math., Volume 46 (1983), pp. 329-343

[16] G. Pisier; Q. Xu Noncommutative Lp-spaces, Handbook of the Geometry of Banach Spaces, vol. 2, 2003, pp. 1459-1517

[17] I.E. Segal A non-commutative extension of abstract integration, Ann. Math., Volume 57 (1953), pp. 401-457

[18] A. Skalski On a classical scheme in noncommutative multiparameter ergodic theory (M. Schurmann; U. Franz, eds.), Quantum Probability and Infinite Dimensional Analysis, QP-PQ 18, World Scientific, Singapore, 2005, pp. 473-491

[19] S. Strătilă; L. Zsidó Lectures on von Neumann Algebras, Editura Academiei Române, Abacus Press, Bucureşti, 1979

[20] F.J. Yeadon Non-commutative Lp-spaces, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 91-102

[21] F.J. Yeadon Ergodic theorems for semifinite von Neumann algebras. I, J. Lond. Math. Soc., Volume 16 (1977) no. 2, pp. 326-332

Cité par Sources :

Commentaires - Politique