Comptes Rendus
Functional analysis/Geometry
Powers and logarithms of convex bodies
Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 981-986.

Do we have enough examples of convex bodies that we truly understand? Is out standard set of examples diverse enough to understand convexity? In this note, we will dramatically increase our set of examples. More specifically, we will present several new constructions of convex bodies: the geometric mean of two convex bodies, the power function Kα (which in general exists only for |α|1), and even the logarithm logK.

Existe-t-il suffisamment de corps convexes que nous comprenions vraiment ? L'éventail usuel d'exemples est-il assez diversifié pour saisir la notion de convexité ? Dans cette note, nous proposons une augmentation drastique du corpus d'exemples. Plus précisément, nous présentons plusieurs constructions nouvelles de corps convexes : la moyenne géométrique de deux corps convexes, la fonction puissance Kα (qui, en général, n'existe que pour |α|1), et même le logarithme logK.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.09.002

Vitali Milman 1; Liran Rotem 2

1 School of Mathematical Science, Tel Aviv University, Tel Aviv 69978, Israel
2 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
@article{CRMATH_2017__355_9_981_0,
     author = {Vitali Milman and Liran Rotem},
     title = {Powers and logarithms of convex bodies},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {981--986},
     publisher = {Elsevier},
     volume = {355},
     number = {9},
     year = {2017},
     doi = {10.1016/j.crma.2017.09.002},
     language = {en},
}
TY  - JOUR
AU  - Vitali Milman
AU  - Liran Rotem
TI  - Powers and logarithms of convex bodies
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 981
EP  - 986
VL  - 355
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2017.09.002
LA  - en
ID  - CRMATH_2017__355_9_981_0
ER  - 
%0 Journal Article
%A Vitali Milman
%A Liran Rotem
%T Powers and logarithms of convex bodies
%J Comptes Rendus. Mathématique
%D 2017
%P 981-986
%V 355
%N 9
%I Elsevier
%R 10.1016/j.crma.2017.09.002
%G en
%F CRMATH_2017__355_9_981_0
Vitali Milman; Liran Rotem. Powers and logarithms of convex bodies. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 981-986. doi : 10.1016/j.crma.2017.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.002/

[1] R. Bhatia Matrix Analysis, Graduate Texts in Mathematics, vol. 169, Springer, New York, New York, NY, 1997

[2] K.J. Böröczky; E. Lutwak; D. Yang; G. Zhang The log-Brunn–Minkowski inequality, Adv. Math., Volume 231 (2012) no. 3–4, pp. 1974-1997

[3] W.J. Firey Polar means of convex bodies and a dual to the Brunn–Minkowski theorem, Can. J. Math., Volume 13 (1961), pp. 444-453

[4] W.J. Firey p-Means of convex bodies, Math. Scand., Volume 10 (1962), pp. 17-24

[5] K. Löwner Über monotone Matrixfunktionen, Math. Z., Volume 38 (1934) no. 1, pp. 177-216

[6] E. Lutwak The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem, J. Differ. Geom., Volume 38 (1993) no. 1, pp. 131-150

[7] E. Lutwak The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas, Adv. Math., Volume 118 (1996) no. 2, pp. 244-294

[8] V. Milman; L. Rotem “Irrational” constructions in convex geometry, Algebra Anal., Volume 29 (2017) no. 1, pp. 222-236

[9] V. Milman; L. Rotem Non-standard constructions in convex geometry; geometric means of convex bodies (E. Carlen; M. Madiman; E. Werner, eds.), Convexity and Concentration, The IMA Volumes in Mathematics and Its Applications, vol. 161, Springer-Verlag, New York, NY, 2017

[10] I. Molchanov Continued fractions built from convex sets and convex functions, Commun. Contemp. Math., Volume 17 (2015) no. 05

[11] L. Rotem Banach limit in convexity and geometric means for convex bodies, Electron. Res. Announ. Math. Sci., Volume 23 (2016), pp. 41-51

[12] R. Schneider Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 2014

Cited by Sources:

The first named author is supported by ISF grant number 519/17, and the second named author is supported by an AMS–Simons Travel Grant. Both authors are also supported by BSF grant number 2016050. Part of the research was conducted while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, supported by NSF grant DMS-1440140.

Comments - Policy