We give a necessary condition for the representation of the space of continuous functions by sums of its k closed subalgebras. A sufficient condition for this representation problem was first obtained by Sternfeld in 1978. In case of two subalgebras (), our necessary condition turns out to be also sufficient. If , our result coincides with a version of the classical Stone–Weierstrass theorem.
Nous donnons une condition nécessaire pour la représentation d'un espace de fonctions continues comme la somme d'un nombre fini k de ses sous-algèbres fermées. Une condition suffisante pour ce problème a été obtenue par Sternfeld en 1978. Dans le cas de deux sous-algèbres (), notre condition nécessaire se trouve être également suffisante. Dans le cas d'une seule sous-algèbre (), notre résultat coïncide avec une version du théorème de Stone–Weierstrass classique.
Accepted:
Published online:
Aida Kh. Asgarova 1; Vugar E. Ismailov 1
@article{CRMATH_2017__355_9_949_0, author = {Aida Kh. Asgarova and Vugar E. Ismailov}, title = {On the representation by sums of algebras of continuous functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {949--955}, publisher = {Elsevier}, volume = {355}, number = {9}, year = {2017}, doi = {10.1016/j.crma.2017.09.015}, language = {en}, }
Aida Kh. Asgarova; Vugar E. Ismailov. On the representation by sums of algebras of continuous functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 949-955. doi : 10.1016/j.crma.2017.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.015/
[1] On functions of three variables, Dokl. Akad. Nauk SSSR, Volume 114 (1957), pp. 679-681 (in Russian); English transl. in Transl. Amer. Math. Soc., 28, 1963, pp. 51-54
[2] Interpolation by ridge functions, J. Approx. Theory, Volume 73 (1993), pp. 218-236
[3] When is ?, Proc. Indian Acad. Sci. Math. Sci., Volume 109 (1999), pp. 57-64
[4] On the approximation of a function of several variables by the sum of functions of fewer variables, Pac. J. Math., Volume 1 (1951), pp. 195-210
[5] Interpolation by piecewise-linear radial basis functions, J. Approx. Theory, Volume 59 (1989), pp. 202-223
[6] On the existence of a best uniform approximation of functions of two variables by sums of the type , Sib. Mat. Zh., Volume 36 (1995), pp. 819-827 (in Russian); English transl. in Sib. Math. J., 36, 1995, pp. 707-713
[7] Methods for computing the least deviation from the sums of functions of one variable, Sib. Mat. Zh., Volume 47 (2006) no. 5, pp. 1076-1082 (in Russian); translation in Sib. Math. J., 47, 5, 2006, pp. 883-888
[8] On the approximation by compositions of fixed multivariate functions with univariate functions, Stud. Math., Volume 183 (2007), pp. 117-126
[9] Representation of multivariate functions by sums of ridge functions, J. Math. Anal. Appl., Volume 331 (2007) no. 1, pp. 184-190
[10] Characterization of an extremal sum of ridge functions, J. Comput. Appl. Math., Volume 205 (2007) no. 1, pp. 105-115
[11] On the representation by linear superpositions, J. Approx. Theory, Volume 151 (2008), pp. 113-125
[12] A note on the representation of continuous functions by linear superpositions, Expo. Math., Volume 30 (2012), pp. 96-101
[13] A Chebyshev theorem for the approximation of a function of two variables by sums of the type , Izv. Acad. Nauk. SSSR, Ser. Mat., Volume 33 (1969), pp. 650-666 (English transl. in Math. USSR, Izv., 3, 1969, pp. 617-632)
[14] Best Approximation by Linear Superpositions (Approximate Nomography), Translations of Mathematical Monographs, vol. 159, American Mathematical Society, Providence, RI, USA, 1997 (Translated from the Russian manuscript by D. Khavinson, 175 pp)
[15] Shift invariant measures and simple spectrum, Colloq. Math., Volume 84/85 (2000) (part 2, 385–394)
[16] When is ?, Proc. Indian Acad. Sci. Math. Sci., Volume 113 (2003), pp. 77-86
[17] Geometry of good sets in n-fold Cartesian product, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004) no. 2, pp. 181-197
[18] On the approximation of a bivariate function by the sum of univariate functions, J. Approx. Theory, Volume 29 (1980), pp. 305-323
[19] Approximation Theory in Tensor Product Spaces, Lect. Notes Math., vol. 1169, Springer-Verlag, Berlin, 1985 (157 pp)
[20] Uniform approximation by real functions, Fundam. Math., Volume 104 (1979), pp. 203-211
[21] Approximation by a sum of two algebras. The lightning bolt principle, J. Funct. Anal., Volume 52 (1983), pp. 353-368
[22] On the sum of two closed algebras of continuous functions on a compact space, Funkc. Anal. Prilozh., Volume 27 (1993) no. 1, pp. 33-36 (in Russian); translation in Funct. Anal. Appl., 27, 1, 1993, pp. 28-30
[23] Kolmogorov's superposition theorem and sums of algebras, J. Anal., Volume 12 (2004), pp. 21-67
[24] Some remarks on good sets, Proc. Indian Acad. Sci. Math. Sci., Volume 114 (2004) no. 4, pp. 389-397
[25] Some further remarks on good sets, Proc. Indian Acad. Sci. Math. Sci., Volume 117 (2007) no. 2, pp. 197-203
[26] Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991 (424 pp)
[27] Sums of subalgebras of , J. Lond. Math. Soc., Volume 45 (1992), pp. 265-278
[28] Uniformly separating families of functions, Isr. J. Math., Volume 29 (1978), pp. 61-91
[29] Uniform separation of points and measures and representation by sums of algebras, Isr. J. Math., Volume 55 (1986), pp. 350-362
[30] Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., Volume 41 (1937), pp. 375-481
[31] The generalized Weierstrass approximation theorem, Math. Mag., Volume 21 (1948), pp. 167-184 (237–254)
Cited by Sources:
Comments - Policy