In this note, we prove that the constant in the energy estimate, for m-subharmonic function with bounded p-energy, is strictly bigger than 1, for , .
Dans cette note, nous prouvons que la constante dans l'estimation d'énergie, pour les fonctions m-sous-harmoniques avec p-énergie finie, est strictement supérieure à 1, pour , .
Accepted:
Published online:
Rafał Czyż 1; Van Thien Nguyen 1
@article{CRMATH_2017__355_10_1050_0, author = {Rafa{\l} Czy\.z and Van Thien Nguyen}, title = {On a constant in the energy estimate}, journal = {Comptes Rendus. Math\'ematique}, pages = {1050--1054}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.09.019}, language = {en}, }
Rafał Czyż; Van Thien Nguyen. On a constant in the energy estimate. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1050-1054. doi : 10.1016/j.crma.2017.09.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.09.019/
[1] An inequality for the beta function with application to pluripotential theory, J. Inequal. Appl., Volume 2009 (2009) no. 1
[2] Modulability and duality of certain cones in pluripotential theory, J. Math. Anal. Appl., Volume 361 (2010) no. 2, pp. 302-321
[3] Concerning the energy class for , Ann. Pol. Math., Volume 91 (2007), pp. 119-130
[4] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44
[5] A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40
[6] Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 5, pp. 1735-1756
[7] Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217
[8] The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179
[9] A priori estimates for the complex Hessian equations, Anal. PDE, Volume 1 (2014), pp. 227-244
[10] Pluripotential Theory, London Mathematical Society Monographs, New Series/Oxford Science Publications, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991
[11] The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005)
[12] Complex Hessian Equations, University of Toulouse-3 Paul-Sabatier, 2012 (Doctoral thesis)
[13] Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math., Volume 50 (2013), pp. 69-88
[14] A Dirichlet principle for the complex Monge–Ampère operator, Ark. Mat., Volume 37 (1999) no. 2, pp. 345-356
[15] On delta m-subharmonic functions, Ann. Pol. Math., Volume 118 (2016) no. 1, pp. 25-49
Cited by Sources:
Comments - Policy