We show that, for any countable discrete nonamenable group Γ, the relations of conjugacy, orbit equivalence, stable orbit equivalence, von Neumann equivalence, and stable von Neumann equivalence of free ergodic pmp actions of Γ on the standard atomless probability space are not Borel. This answers a question of Kechris.
Nous montrons que, pour tout groupe dénombrable discret et non moyennable Γ, les relations de conjugaison, d'équivalence orbitale, d'équivalence orbitale stable, d'équivalence de von Neumann et d'équivalence de von Neumann stable des actions libres ergodiques de Γ sur un espace borélien standard muni d'une mesure de probabilité sans atomes ne sont pas Borel. Cela répond à une question de Kechris.
Accepted:
Published online:
Eusebio Gardella 1; Martino Lupini 2
@article{CRMATH_2017__355_10_1037_0, author = {Eusebio Gardella and Martino Lupini}, title = {On the classification problem of free ergodic actions of nonamenable groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1037--1040}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.10.004}, language = {en}, }
TY - JOUR AU - Eusebio Gardella AU - Martino Lupini TI - On the classification problem of free ergodic actions of nonamenable groups JO - Comptes Rendus. Mathématique PY - 2017 SP - 1037 EP - 1040 VL - 355 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2017.10.004 LA - en ID - CRMATH_2017__355_10_1037_0 ER -
Eusebio Gardella; Martino Lupini. On the classification problem of free ergodic actions of nonamenable groups. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1037-1040. doi : 10.1016/j.crma.2017.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.004/
[1] von Neumann's problem and extensions of non-amenable equivalence relations, 2015 | arXiv
[2] An amenable equivalence relation is generated by a single transformation, Ergod. Theory Dyn. Syst., Volume 1 (1981) no. 4, pp. 431-450
[3] On groups of measure preserving transformation. I, Amer. J. Math., Volume 81 (1959), pp. 119-159
[4] Orbit inequivalent actions of non-amenable groups, 2007 | arXiv
[5] The Borel complexity of von Neumann equivalence, 2011 | arXiv
[6] A measurable-group-theoretic solution to von Neumann's problem, Invent. Math., Volume 177 (2009) no. 3, pp. 533-540
[7] Lectures on Ergodic Theory, Publications of the Mathematical Society of Japan, vol. 3, The Mathematical Society of Japan, 1956
[8] Relative property (T) for the subequivalence relations induced by the action of on , Adv. Math., Volume 224 (2010) no. 4, pp. 1589-1617
[9] Orbit inequivalent actions for groups containing a copy of , Invent. Math., Volume 185 (2011) no. 1, pp. 55-73
[10] Subequivalence relations and positive-definite functions, Groups Geom. Dyn., Volume 3 (2009) no. 4, pp. 579-625
[11] Global Aspects of Ergodic Group Actions, Mathematical Surveys and Monographs, vol. 160, American Mathematical Society, Providence, RI, USA, 2010
[12] Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., Volume 48 (1987), pp. 1-141
[13] Some rigidity results for non-commutative Bernoulli shifts, J. Funct. Anal., Volume 230 (2006) no. 2, pp. 273-328
[14] On a class of type factors with Betti numbers invariants, Ann. of Math. (2), Volume 163 (2006) no. 3, pp. 809-899
[15] Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups, Invent. Math., Volume 170 (2007) no. 2, pp. 243-295
Cited by Sources:
Comments - Policy