[Une preuve de la conjecture de l'identité intégrale, II]
Dans cette note, en utilisant la théorie de l'intégration motivique de Cluckers et Loeser, nous prouvons la conjecture de l'identité intégrale dans le cadre d'un anneau de Grothendieck de variétés localisé sur un corps arbitraire de caractéristique nulle.
In this note, using Cluckers–Loeser's theory of motivic integration, we prove the integral identity conjecture with framework a localized Grothendieck ring of varieties over an arbitrary base field of characteristic zero.
Accepté le :
Publié le :
Quy Thuong Lê 1, 2
@article{CRMATH_2017__355_10_1041_0, author = {Quy Thuong L\^e}, title = {A proof of the integral identity conjecture, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1041--1045}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.10.005}, language = {en}, }
Quy Thuong Lê. A proof of the integral identity conjecture, II. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1041-1045. doi : 10.1016/j.crma.2017.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.005/
[1] Constructible motivic functions and motivic integration, Invent. Math., Volume 173 (2008) no. 1, pp. 23-121
[2] Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537
[3] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232
[4] Stability structures, motivic Donalson–Thomas invariants and cluster tranformations | arXiv
[5] On a conjecture of Kontsevich and Soibelman, Algebra Number Theory, Volume 6 (2012) no. 2, pp. 389-404
[6] Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J., Volume 164 (2015) no. 1, pp. 157-194
[7] A tropical motivic Fubini theorem with applications to Donaldson–Thomas theory | arXiv
- The moduli space of stable coherent sheaves via non-archimedean geometry, arXiv (2017) | DOI:10.48550/arxiv.1703.00497 | arXiv:1703.00497
- On motivic Joyce-Song formula for the Behrend function identities, arXiv (2016) | DOI:10.48550/arxiv.1601.00133 | arXiv:1601.00133
- Euler reflexion formulas for motivic multiple zeta functions, arXiv (2015) | DOI:10.48550/arxiv.1510.05463 | arXiv:1510.05463
Cité par 3 documents. Sources : NASA ADS
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier