Comptes Rendus
Logic/Algebraic geometry
A proof of the integral identity conjecture, II
Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1041-1045.

In this note, using Cluckers–Loeser's theory of motivic integration, we prove the integral identity conjecture with framework a localized Grothendieck ring of varieties over an arbitrary base field of characteristic zero.

Dans cette note, en utilisant la théorie de l'intégration motivique de Cluckers et Loeser, nous prouvons la conjecture de l'identité intégrale dans le cadre d'un anneau de Grothendieck de variétés localisé sur un corps arbitraire de caractéristique nulle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.10.005

Quy Thuong Lê 1, 2

1 Department of Mathematics, Vietnam National University, 334 Nguyen Trai Street, Hanoi, Viet Nam
2 Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
@article{CRMATH_2017__355_10_1041_0,
     author = {Quy Thuong L\^e},
     title = {A proof of the integral identity conjecture, {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1041--1045},
     publisher = {Elsevier},
     volume = {355},
     number = {10},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.005},
     language = {en},
}
TY  - JOUR
AU  - Quy Thuong Lê
TI  - A proof of the integral identity conjecture, II
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1041
EP  - 1045
VL  - 355
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.005
LA  - en
ID  - CRMATH_2017__355_10_1041_0
ER  - 
%0 Journal Article
%A Quy Thuong Lê
%T A proof of the integral identity conjecture, II
%J Comptes Rendus. Mathématique
%D 2017
%P 1041-1045
%V 355
%N 10
%I Elsevier
%R 10.1016/j.crma.2017.10.005
%G en
%F CRMATH_2017__355_10_1041_0
Quy Thuong Lê. A proof of the integral identity conjecture, II. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1041-1045. doi : 10.1016/j.crma.2017.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.005/

[1] R. Cluckers; F. Loeser Constructible motivic functions and motivic integration, Invent. Math., Volume 173 (2008) no. 1, pp. 23-121

[2] J. Denef; F. Loeser Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537

[3] J. Denef; F. Loeser Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999), pp. 201-232

[4] M. Kontsevich; Y. Soibelman Stability structures, motivic Donalson–Thomas invariants and cluster tranformations | arXiv

[5] Q.T. Lê On a conjecture of Kontsevich and Soibelman, Algebra Number Theory, Volume 6 (2012) no. 2, pp. 389-404

[6] Q.T. Lê Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J., Volume 164 (2015) no. 1, pp. 157-194

[7] J. Nicaise; S. Payne A tropical motivic Fubini theorem with applications to Donaldson–Thomas theory | arXiv

Cited by Sources:

Comments - Policy