Comptes Rendus
Mathematical analysis/Differential topology
A refined estimate for the topological degree
[Une estimée raffinée du degré topologique]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1046-1049.

Nous affinons une estimée du degré topologique pour des applications continues d'une sphère Sd dans elle-même dans le cas d2. Cela fournit la réponse pour d2 à une question posée par Brezis. Le problème est encore ouvert pour d=1.

We sharpen an estimate of [4] for the topological degree of continuous maps from a sphere Sd into itself in the case d2. This provides the answer for d2 to a question raised by Brezis. The problem is still open for d=1.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.007

Hoai-Minh Nguyen 1

1 École polytechnique fédérale de Lausanne, EPFL, SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland
@article{CRMATH_2017__355_10_1046_0,
     author = {Hoai-Minh Nguyen},
     title = {A refined estimate for the topological degree},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1046--1049},
     publisher = {Elsevier},
     volume = {355},
     number = {10},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.007},
     language = {en},
}
TY  - JOUR
AU  - Hoai-Minh Nguyen
TI  - A refined estimate for the topological degree
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1046
EP  - 1049
VL  - 355
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.007
LA  - en
ID  - CRMATH_2017__355_10_1046_0
ER  - 
%0 Journal Article
%A Hoai-Minh Nguyen
%T A refined estimate for the topological degree
%J Comptes Rendus. Mathématique
%D 2017
%P 1046-1049
%V 355
%N 10
%I Elsevier
%R 10.1016/j.crma.2017.10.007
%G en
%F CRMATH_2017__355_10_1046_0
Hoai-Minh Nguyen. A refined estimate for the topological degree. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1046-1049. doi : 10.1016/j.crma.2017.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.007/

[1] F. Bethuel; H. Brezis; F. Helein Ginzburg–Landau Vortices, Prog. Nonlinear Differ. Equ. Appl., vol. 13, Birkhäuser, Boston, 1994

[2] J. Bourgain; H. Brezis; P. Mironescu Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005), pp. 529-551

[3] J. Bourgain; H. Brezis; P. Mironescu Complements to the paper “Lifting, Degree, and Distributional Jacobian Revisited” | HAL

[4] J. Bourgain; H. Brezis; H-M. Nguyen A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 787-791

[5] J. Bourgain; H-M. Nguyen A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 75-80

[6] H. Brezis (Prog. Math.), Volume vol. 244, Birkhäuser (2006), pp. 137-154

[7] H. Brezis, Private communication, 2006.

[8] H-M. Nguyen Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006), pp. 689-720

[9] H-M. Nguyen Optimal constant in a new estimate for the degree, J. Anal. Math., Volume 101 (2007), pp. 367-395

[10] H-M. Nguyen Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011), pp. 483-509

Cité par Sources :

Commentaires - Politique