[Une procédure de quadrature empirique par programmation linéaire pour les fonctions à paramètres]
We extend the linear program empirical quadrature procedure proposed in [9] and subsequently [3] to the case in which the functions to be integrated are associated with a parametric manifold. We pose a discretized linear semi-infinite program: we minimize as objective the sum of the (positive) quadrature weights, an
Nous étendons la procédure de quadrature empirique par programmation linéaire proposée dans [9] et par la suite dans [3] au cas où les fonctions à intégrer sont associées à une variété paramétrique. Nous posons un problème de programmation linéaire discret et semi-infini : nous minimisons la fonction objectif, qui est la somme des poids (positifs) de quadrature, qui constitue une norme
Accepté le :
Publié le :
Anthony T. Patera 1 ; Masayuki Yano 2
@article{CRMATH_2017__355_11_1161_0, author = {Anthony T. Patera and Masayuki Yano}, title = {An {LP} empirical quadrature procedure for parametrized functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1161--1167}, publisher = {Elsevier}, volume = {355}, number = {11}, year = {2017}, doi = {10.1016/j.crma.2017.10.020}, language = {en}, }
Anthony T. Patera; Masayuki Yano. An LP empirical quadrature procedure for parametrized functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1161-1167. doi : 10.1016/j.crma.2017.10.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.020/
[1] Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph., Volume 27 (2008) no. 5
[2] An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672
[3] R. DeVore, S. Foucart, G. Petrova, P. Wojtaszczyk, Computing a quantity of interest from observational data, preprint, 2017.
[4] A necessary and sufficient condition for exact sparse recovery by
[5] Sparse and Redundant Representations, Springer, 2010
[6] Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models, Int. J. Numer. Methods Eng., Volume 102 (2015), pp. 1077-1110
[7] A Mathematical Introduction to Compressive Sensing, Birkhäuser, 2013
[8] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations; application to transport and continuum mechanics, Arch. Comput. Methods Eng., Volume 15 (2008), pp. 229-275
[9] Extensions of Gauss quadrature via linear programming, Found. Comput. Math., Volume 15 (2015), pp. 953-971
Cité par Sources :
Commentaires - Politique