[Sur des solutions distributionnelles de problèmes locaux et non locaux de type milieux poreux]
We present a theory of well-posedness and a priori estimates for bounded distributional (or very weak) solutions of
(0.1) |
Nous montrons l'unicité, l'existence, et des estimations a priori pour des solutions distributionnelles bornées de (0.1), où φ est continue et croissante et
Accepté le :
Publié le :
Félix del Teso 1 ; Jørgen Endal 1 ; Espen R. Jakobsen 1
@article{CRMATH_2017__355_11_1154_0, author = {F\'elix del Teso and J{\o}rgen Endal and Espen R. Jakobsen}, title = {On distributional solutions of local and nonlocal problems of porous medium type}, journal = {Comptes Rendus. Math\'ematique}, pages = {1154--1160}, publisher = {Elsevier}, volume = {355}, number = {11}, year = {2017}, doi = {10.1016/j.crma.2017.10.010}, language = {en}, }
TY - JOUR AU - Félix del Teso AU - Jørgen Endal AU - Espen R. Jakobsen TI - On distributional solutions of local and nonlocal problems of porous medium type JO - Comptes Rendus. Mathématique PY - 2017 SP - 1154 EP - 1160 VL - 355 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2017.10.010 LA - en ID - CRMATH_2017__355_11_1154_0 ER -
%0 Journal Article %A Félix del Teso %A Jørgen Endal %A Espen R. Jakobsen %T On distributional solutions of local and nonlocal problems of porous medium type %J Comptes Rendus. Mathématique %D 2017 %P 1154-1160 %V 355 %N 11 %I Elsevier %R 10.1016/j.crma.2017.10.010 %G en %F CRMATH_2017__355_11_1154_0
Félix del Teso; Jørgen Endal; Espen R. Jakobsen. On distributional solutions of local and nonlocal problems of porous medium type. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1154-1160. doi : 10.1016/j.crma.2017.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.010/
[1] Uniqueness of solutions of the initial-value problem for
[2] A general fractional porous medium equation, Commun. Pure Appl. Math., Volume 65 (2012) no. 9, pp. 1242-1284
[3] F. del Teso, J. Endal, E.R. Jakobsen, Numerical methods and analysis for nonlocal (and local) equations of porous medium type, preprint, 2017.
[4] On the well-posedness of solutions with finite energy for nonlocal equations of porous medium type, Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden's 60th Birthday, EMS Ser. Congr. Rep., 2017 (in press)
[5] Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type, Adv. Math., Volume 305 (2017), pp. 78-143
[6] The Porous Medium Equation. Mathematical Theory, Oxf. Math. Monogr., Clarendon Press, Oxford University Press, Oxford, UK, 2007
Cité par Sources :
Commentaires - Politique