Dans cet article, nous établissons une identité pour des polynômes d'Appell généralisant des formules explicites pour les nombres et polynômes de Bernoulli généralisés.
In this paper, we establish an identity for some Appell polynomials generalizing explicit formulas for generalized Bernoulli numbers and polynomials.
Accepté le :
Publié le :
Farid Bencherif 1 ; Benali Benzaghou 2 ; Schehrazade Zerroukhat 2
@article{CRMATH_2017__355_12_1201_0, author = {Farid Bencherif and Benali Benzaghou and Schehrazade Zerroukhat}, title = {Une identit\'e pour des polyn\^omes {d'Appell}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1201--1204}, publisher = {Elsevier}, volume = {355}, number = {12}, year = {2017}, doi = {10.1016/j.crma.2017.11.002}, language = {fr}, }
Farid Bencherif; Benali Benzaghou; Schehrazade Zerroukhat. Une identité pour des polynômes d'Appell. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1201-1204. doi : 10.1016/j.crma.2017.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.002/
[1] Sur une classe de polynômes, Ann. Sci. Éc. Norm. Supér., Volume 9 (1880) no. 2, pp. 119-144
[2] Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials, Mediterr. J. Math., Volume 14 (2017), p. 89
[3] Weighted Stirling numbers of the first and second kind—I, Fibonacci Q., Volume 18 (1980), pp. 147-162
[4] Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., Dordrecht and Boston, 1974
[5] Explicit formulas for Bernoulli numbers, Amer. Math. Mon., Volume 79 (1972), pp. 44-51
[6] Mathématiques concrètes, Fondations pour l'Informatique, International Thomson publishing France, 1998
[7] An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory, Volume 3 (2015) no. 1, pp. 27-30
[8] On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory, Volume 113 (2005) no. 1, pp. 53-68
[9] Calculus of Finite Differences, Chelsea, New York, 1950 (Budapest, 1939)
[10] Two closed forms for the Bernoulli polynomials, J. Number Theory, Volume 159 (2016), pp. 89-100
[11] The Umbral Calculus, Academic Press, New York, NY, USA, 1984
[12] Some identities involving Bernoulli and Stirling numbers, J. Number Theory, Volume 90 (2001) no. 1, pp. 130-142
[13] An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. Appl., Volume 130 (1988), pp. 509-513
[14] Une formule simple explicite des nombres de Bernoulli genéralisés, C. R. Acad. Sci. Paris, Ser. I, Volume 301 (1985), pp. 665-666
Cité par Sources :
Commentaires - Politique