There are two theories describing the linearizability of 3-webs: one is developed in [10] and another in [8]. Unfortunately they cannot be both correct because on an explicit 3-web they contradict: the first predicts that is linearizable, while the second states that is not linearizable. The essential question beyond this particular 3-web is: which theory describes correctly the linearizability condition? In this paper, we present a very short proof, due to J.-P. Dufour, that is linearizable, confirming the result of [10].
Il existe deux théories décrivant la linéarisabilité des 3-tissus : l'une est développée dans [10], l'autre dans [8]. Malheureusement, elles ne peuvent pas être correctes toutes les deux, car sur un 3-tissu elles se contredisent : la première prédit que le tissu est linéarisable, tandis que la seconde affirme que n'est pas linéarisable. La question essentielle au-delà de ce 3-tissu particulier est : quelle théorie décrit correctement la condition de linéarisabilité ? Dans cet article, nous présentons une preuve très courte, due à J.-P. Dufour, de ce que le tissu est linéarisable, confirmant le résultat de [10].
Accepted:
Published online:
Zoltán Muzsnay 1
@article{CRMATH_2018__356_1_97_0, author = {Zolt\'an Muzsnay}, title = {On the linearizability of 3-webs: {End} of controversy}, journal = {Comptes Rendus. Math\'ematique}, pages = {97--99}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.12.006}, language = {en}, }
Zoltán Muzsnay. On the linearizability of 3-webs: End of controversy. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 97-99. doi : 10.1016/j.crma.2017.12.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.006/
[1] Gronwall's conjecture for 3-webs with infinitesimal symmetries, 2015 | arXiv
[2] Counterexample to Gronwall's conjecture, 2017 | arXiv
[3] Einführung in die Geometrie der Waben, Birkhäuser Verlag, Basel und Stuttgart, 1955
[4] Topologische Fragen der Differentialgeometrie 31. Geradlinige Kurvengewebe, Abh. Math. Semin. Univ. Hamb., Volume 8 (1931) no. 1, pp. 264-270
[5] Eine Invariantentheorie der Dreigewebe aus r-dimensionalen Mannigfaltigkeiten im , Abh. Math. Semin. Univ. Hamb., Volume 11 (1935) no. 1, pp. 333-358
[6] On a linearizability condition for a three-web on a two-dimensional manifold, Peniscola, 1988 (Lecture Notes in Math.), Volume vol. 1410, Springer, Berlin (1989), pp. 223-239
[7] On linearization of planar three-webs and Blaschke's conjecture, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 3, pp. 169-173
[8] On the Blaschke conjecture for 3-webs, J. Geom. Anal., Volume 16 (2006) no. 1, pp. 69-115
[9] Variations on a theorem of Abel, Invent. Math., Volume 35 (1976), pp. 321-390
[10] On the linearizability of 3-webs, Nonlinear Anal., Volume 47 (2001) no. 4, pp. 2643-2654
[11] Linearizable 3-webs and the Gronwall conjecture, Publ. Math. (Debr.), Volume 71 (2007) no. 1–2, pp. 207-227
[12] On the problem of linearizability of a 3-web, Nonlinear Anal., Volume 68 (2008) no. 6, pp. 1595-1602
[13] Invariant tensor fields and the canonical connection of a 3-web, Aequ. Math., Volume 35 (1988) no. 1, pp. 31-44
[14] An Invitation to Web Geometry, IMPA Monographs, vol. 2, Springer, Cham, Switzerland, 2015
[15] On the Gronwall conjecture, J. Geom. Anal., Volume 22 (2012) no. 1, pp. 38-73
Cited by Sources:
☆ This work is partially supported by the EFOP-3.6.2-16-2017-00015 project and by the EFOP-3.6.1-16-2016-00022 project. The projects have been supported by the European Union, co-financed by the European Social Fund.
Comments - Policy