Comptes Rendus
Partial differential equations/Mathematical physics
Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics
[Paquets d'ondes et distance quadratique de Monge–Kantorovich en mécanique quantique]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 177-197.

In this paper, we extend the upper and lower bounds for the “pseudo-distance” on quantum densities analogous to the quadratic Monge–Kantorovich(–Vasershtein) distance introduced in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205] to positive quantizations defined in terms of the family of phase space translates of a density operator, not necessarily of rank 1 as in the case of the Töplitz quantization. As a corollary, we prove that the uniform as ħ0 convergence rate for the mean-field limit of the N-particle Heisenberg equation holds for a much wider class of initial data than in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205]. We also discuss the relevance of the pseudo-distance compared to the Schatten norms for the purpose of metrizing the set of quantum density operators in the semiclassical regime.

Nous considérons dans ce texte la « pseudo-distance » entre densités quantiques introduite dans [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205], analogue à la distance quadratique de Monge–Kantorovich(–Vasershtein). Nous en étendons les bornes inférieures et supérieures aux quantifications positives définies en termes de la famille des espaces de phase translatés d'un opérateur de densité, pas nécessairement de rang 1 comme dans le cas de la quantification de Töplitz. Comme corollaire, nous démontrons que le taux de convergence uniforme, lorsque ħ tend vers 0, de la limite de champ moyen de l'équation de Heisenberg à N particules vaut pour une classe beaucoup plus large de données initiales que dans [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205]. Nous discutons également la pertinence de la pseudo-distance, comparée aux normes de Schatten, dans le but de métriser l'ensemble des opérateurs de densité quantique en régime semi-classique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.12.007

François Golse 1 ; Thierry Paul 1

1 CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
@article{CRMATH_2018__356_2_177_0,
     author = {Fran\c{c}ois Golse and Thierry Paul},
     title = {Wave packets and the quadratic {Monge{\textendash}Kantorovich} distance in quantum mechanics},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {177--197},
     publisher = {Elsevier},
     volume = {356},
     number = {2},
     year = {2018},
     doi = {10.1016/j.crma.2017.12.007},
     language = {en},
}
TY  - JOUR
AU  - François Golse
AU  - Thierry Paul
TI  - Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 177
EP  - 197
VL  - 356
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2017.12.007
LA  - en
ID  - CRMATH_2018__356_2_177_0
ER  - 
%0 Journal Article
%A François Golse
%A Thierry Paul
%T Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics
%J Comptes Rendus. Mathématique
%D 2018
%P 177-197
%V 356
%N 2
%I Elsevier
%R 10.1016/j.crma.2017.12.007
%G en
%F CRMATH_2018__356_2_177_0
François Golse; Thierry Paul. Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 177-197. doi : 10.1016/j.crma.2017.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.007/

[1] C. Bardos; L. Erdös; F. Golse; N. Mauser; H.-T. Yau Derivation of the Schrödinger–Poisson equation from the quantum N-body problem, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 515-520

[2] C. Bardos; F. Golse; N. Mauser Weak coupling limit of the N particle Schrödinger equation, Methods Appl. Anal., Volume 7 (2000), pp. 275-293

[3] C. Cohen-Tannoudji; B. Diu; F. Laloë Quantum Mechanics, vol. 1, John Wiley, New York, 1991

[4] L. Erdös; H.-T. Yau Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., Volume 5 (2001), pp. 1169-1205

[5] F. Golse; C. Mouhot; T. Paul On the mean field and classical limits of quantum mechanics, Commun. Math. Phys., Volume 343 (2016), pp. 165-205

[6] C. Gomez; M. Hauray Rigorous derivation of Lindblad equations from quantum jump processes in 1D | arXiv

[7] A. Grossmann; J. Morlet; T. Paul Transforms associated to square integrable representations I, J. Math. Phys., Volume 26 (1985), pp. 2473-2479

[8] L.D. Landau; E.M. Lifshitz Quantum Mechanics. Nonrelativistic Theory, Pergamon Press Ltd., 1977

[9] P.-L. Lions; T. Paul Sur les mesures de Wigner, Rev. Mat. Iberoam., Volume 9 (1993), pp. 553-618

[10] P. Pickl A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys., Volume 97 (2011), pp. 151-164

[11] M. Reed; B. Simon Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, 1975

[12] M. Reed; B. Simon Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press, 1980

[13] I. Rodnianski; B. Schlein Quantum fluctuations and rate of convergence towards mean-field dynamics, Commun. Math. Phys., Volume 291 (2009), pp. 31-61

[14] E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik, Naturwissenschaften, Volume 14 (1926), pp. 664-666

[15] H. Spohn Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., Volume 52 (1980), pp. 600-640

[16] C. Villani Topics in Optimal Transportation, American Math. Soc., Providence, RI, USA, 2003

  • Bowen Li; Jun Zou On a general matrix-valued unbalanced optimal transport problem, European Journal of Applied Mathematics (2025), p. 1 | DOI:10.1017/s0956792524000901
  • Richárd Simon; Dániel Virosztek Isometries of the qubit state space with respect to quantum Wasserstein distances, Linear Algebra and its Applications, Volume 714 (2025), p. 1 | DOI:10.1016/j.laa.2025.03.004
  • Rafał Bistroń; Michał Eckstein; Shmuel Friedland; Tomasz Miller; Karol Życzkowski A new class of distances on complex projective spaces, Linear Algebra and its Applications, Volume 721 (2025), p. 577 | DOI:10.1016/j.laa.2024.10.017
  • Bowen Li; Jun Zou On the convergence of discrete dynamic unbalanced transport models, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 3, p. 957 | DOI:10.1051/m2an/2024024
  • Giacomo De Palma; Tristan Klein; Davide Pastorello Classical shadows meet quantum optimal mass transport, Journal of Mathematical Physics, Volume 65 (2024) no. 9 | DOI:10.1063/5.0178897
  • Eric Carlen Dynamics and Quantum Optimal Transport: Three Lectures on Quantum Entropy and Quantum Markov Semigroups, Optimal Transport on Quantum Structures, Volume 29 (2024), p. 29 | DOI:10.1007/978-3-031-50466-2_2
  • Gergely Bunth; József Pitrik; Tamás Titkos; Dániel Virosztek Metric property of quantum Wasserstein divergences, Physical Review A, Volume 110 (2024) no. 2 | DOI:10.1103/physreva.110.022211
  • Giacomo De Palma; Dario Trevisan The Wasserstein Distance of Order 1 for Quantum Spin Systems on Infinite Lattices, Annales Henri Poincaré, Volume 24 (2023) no. 12, p. 4237 | DOI:10.1007/s00023-023-01340-y
  • Rocco Duvenhage; Mathumo Mapaya Quantum Wasserstein distance of order 1 between channels, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 26 (2023) no. 03 | DOI:10.1142/s0219025723500066
  • R Bistroń; M Eckstein; K Życzkowski Monotonicity of a quantum 2-Wasserstein distance, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 9, p. 095301 | DOI:10.1088/1751-8121/acb9c8
  • Sam Cole; Michał Eckstein; Shmuel Friedland; Karol Życzkowski On Quantum Optimal Transport, Mathematical Physics, Analysis and Geometry, Volume 26 (2023) no. 2 | DOI:10.1007/s11040-023-09456-7
  • Fabio Zoratti; Giacomo De Palma; Bobak Kiani; Quynh T. Nguyen; Milad Marvian; Seth Lloyd; Vittorio Giovannetti Improving the speed of variational quantum algorithms for quantum error correction, Physical Review A, Volume 108 (2023) no. 2 | DOI:10.1103/physreva.108.022611
  • Géza Tóth; József Pitrik Quantum Wasserstein distance based on an optimization over separable states, Quantum, Volume 7 (2023), p. 1143 | DOI:10.22331/q-2023-10-16-1143
  • François Golse; Thierry Paul Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 6, p. 1332 | DOI:10.1002/cpa.21986
  • Shmuel Friedland; Michał Eckstein; Sam Cole; Karol Życzkowski Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices, Physical Review Letters, Volume 129 (2022) no. 11 | DOI:10.1103/physrevlett.129.110402
  • Bobak Toussi Kiani; Giacomo De Palma; Milad Marvian; Zi-Wen Liu; Seth Lloyd Learning quantum data with the quantum earth mover’s distance, Quantum Science and Technology, Volume 7 (2022) no. 4, p. 045002 | DOI:10.1088/2058-9565/ac79c9
  • Giacomo De Palma; Dario Trevisan Quantum Optimal Transport with Quantum Channels, Annales Henri Poincaré, Volume 22 (2021) no. 10, p. 3199 | DOI:10.1007/s00023-021-01042-3
  • Laurent Lafleche Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 6, p. 1739 | DOI:10.1016/j.anihpc.2021.01.004
  • François Golse; Shi Jin; Thierry Paul On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime, Foundations of Computational Mathematics, Volume 21 (2021) no. 3, p. 613 | DOI:10.1007/s10208-020-09470-z
  • Giacomo De Palma; Milad Marvian; Dario Trevisan; Seth Lloyd The Quantum Wasserstein Distance of Order 1, IEEE Transactions on Information Theory, Volume 67 (2021) no. 10, p. 6627 | DOI:10.1109/tit.2021.3076442
  • François Golse; Thierry Paul Semiclassical evolution with low regularity, Journal de Mathématiques Pures et Appliquées, Volume 151 (2021), p. 257 | DOI:10.1016/j.matpur.2021.02.008
  • Rocco Duvenhage Optimal quantum channels, Physical Review A, Volume 104 (2021) no. 3 | DOI:10.1103/physreva.104.032604
  • E. Caglioti; F. Golse; T. Paul Quantum Optimal Transport is Cheaper, Journal of Statistical Physics, Volume 181 (2020) no. 1, p. 149 | DOI:10.1007/s10955-020-02571-7
  • François Golse; Thierry Paul Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit, Communications in Mathematical Physics, Volume 369 (2019) no. 3, p. 1021 | DOI:10.1007/s00220-019-03357-z
  • Yu Cao; Jianfeng Lu; Yulong Lu Gradient flow structure and exponential decay of the sandwiched Rényi divergence for primitive Lindblad equations with GNS-detailed balance, Journal of Mathematical Physics, Volume 60 (2019) no. 5 | DOI:10.1063/1.5083065
  • Laurent Lafleche Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation, Journal of Statistical Physics, Volume 177 (2019) no. 1, p. 20 | DOI:10.1007/s10955-019-02356-7
  • François Golse The quantumN-body problem in the mean-field and semiclassical regime, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2118, p. 20170229 | DOI:10.1098/rsta.2017.0229

Cité par 27 documents. Sources : Crossref

Commentaires - Politique