[Paquets d'ondes et distance quadratique de Monge–Kantorovich en mécanique quantique]
In this paper, we extend the upper and lower bounds for the “pseudo-distance” on quantum densities analogous to the quadratic Monge–Kantorovich(–Vasershtein) distance introduced in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205] to positive quantizations defined in terms of the family of phase space translates of a density operator, not necessarily of rank 1 as in the case of the Töplitz quantization. As a corollary, we prove that the uniform as
Nous considérons dans ce texte la « pseudo-distance » entre densités quantiques introduite dans [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205], analogue à la distance quadratique de Monge–Kantorovich(–Vasershtein). Nous en étendons les bornes inférieures et supérieures aux quantifications positives définies en termes de la famille des espaces de phase translatés d'un opérateur de densité, pas nécessairement de rang 1 comme dans le cas de la quantification de Töplitz. Comme corollaire, nous démontrons que le taux de convergence uniforme, lorsque ħ tend vers 0, de la limite de champ moyen de l'équation de Heisenberg à N particules vaut pour une classe beaucoup plus large de données initiales que dans [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205]. Nous discutons également la pertinence de la pseudo-distance, comparée aux normes de Schatten, dans le but de métriser l'ensemble des opérateurs de densité quantique en régime semi-classique.
Accepté le :
Publié le :
François Golse 1 ; Thierry Paul 1
@article{CRMATH_2018__356_2_177_0, author = {Fran\c{c}ois Golse and Thierry Paul}, title = {Wave packets and the quadratic {Monge{\textendash}Kantorovich} distance in quantum mechanics}, journal = {Comptes Rendus. Math\'ematique}, pages = {177--197}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.12.007}, language = {en}, }
François Golse; Thierry Paul. Wave packets and the quadratic Monge–Kantorovich distance in quantum mechanics. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 177-197. doi : 10.1016/j.crma.2017.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.007/
[1] Derivation of the Schrödinger–Poisson equation from the quantum N-body problem, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 515-520
[2] Weak coupling limit of the N particle Schrödinger equation, Methods Appl. Anal., Volume 7 (2000), pp. 275-293
[3] Quantum Mechanics, vol. 1, John Wiley, New York, 1991
[4] Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., Volume 5 (2001), pp. 1169-1205
[5] On the mean field and classical limits of quantum mechanics, Commun. Math. Phys., Volume 343 (2016), pp. 165-205
[6] Rigorous derivation of Lindblad equations from quantum jump processes in 1D | arXiv
[7] Transforms associated to square integrable representations I, J. Math. Phys., Volume 26 (1985), pp. 2473-2479
[8] Quantum Mechanics. Nonrelativistic Theory, Pergamon Press Ltd., 1977
[9] Sur les mesures de Wigner, Rev. Mat. Iberoam., Volume 9 (1993), pp. 553-618
[10] A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys., Volume 97 (2011), pp. 151-164
[11] Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, 1975
[12] Methods of Modern Mathematical Physics. I: Functional Analysis, Academic Press, 1980
[13] Quantum fluctuations and rate of convergence towards mean-field dynamics, Commun. Math. Phys., Volume 291 (2009), pp. 31-61
[14] Der stetige Übergang von der Mikro- zur Makromechanik, Naturwissenschaften, Volume 14 (1926), pp. 664-666
[15] Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys., Volume 52 (1980), pp. 600-640
[16] Topics in Optimal Transportation, American Math. Soc., Providence, RI, USA, 2003
- On a general matrix-valued unbalanced optimal transport problem, European Journal of Applied Mathematics (2025), p. 1 | DOI:10.1017/s0956792524000901
- Isometries of the qubit state space with respect to quantum Wasserstein distances, Linear Algebra and its Applications, Volume 714 (2025), p. 1 | DOI:10.1016/j.laa.2025.03.004
- A new class of distances on complex projective spaces, Linear Algebra and its Applications, Volume 721 (2025), p. 577 | DOI:10.1016/j.laa.2024.10.017
- On the convergence of discrete dynamic unbalanced transport models, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 3, p. 957 | DOI:10.1051/m2an/2024024
- Classical shadows meet quantum optimal mass transport, Journal of Mathematical Physics, Volume 65 (2024) no. 9 | DOI:10.1063/5.0178897
- Dynamics and Quantum Optimal Transport: Three Lectures on Quantum Entropy and Quantum Markov Semigroups, Optimal Transport on Quantum Structures, Volume 29 (2024), p. 29 | DOI:10.1007/978-3-031-50466-2_2
- Metric property of quantum Wasserstein divergences, Physical Review A, Volume 110 (2024) no. 2 | DOI:10.1103/physreva.110.022211
- The Wasserstein Distance of Order 1 for Quantum Spin Systems on Infinite Lattices, Annales Henri Poincaré, Volume 24 (2023) no. 12, p. 4237 | DOI:10.1007/s00023-023-01340-y
- Quantum Wasserstein distance of order 1 between channels, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 26 (2023) no. 03 | DOI:10.1142/s0219025723500066
- Monotonicity of a quantum 2-Wasserstein distance, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 9, p. 095301 | DOI:10.1088/1751-8121/acb9c8
- On Quantum Optimal Transport, Mathematical Physics, Analysis and Geometry, Volume 26 (2023) no. 2 | DOI:10.1007/s11040-023-09456-7
- Improving the speed of variational quantum algorithms for quantum error correction, Physical Review A, Volume 108 (2023) no. 2 | DOI:10.1103/physreva.108.022611
- Quantum Wasserstein distance based on an optimization over separable states, Quantum, Volume 7 (2023), p. 1143 | DOI:10.22331/q-2023-10-16-1143
- Mean‐Field and Classical Limit for the N‐Body Quantum Dynamics with Coulomb Interaction, Communications on Pure and Applied Mathematics, Volume 75 (2022) no. 6, p. 1332 | DOI:10.1002/cpa.21986
- Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices, Physical Review Letters, Volume 129 (2022) no. 11 | DOI:10.1103/physrevlett.129.110402
- Learning quantum data with the quantum earth mover’s distance, Quantum Science and Technology, Volume 7 (2022) no. 4, p. 045002 | DOI:10.1088/2058-9565/ac79c9
- Quantum Optimal Transport with Quantum Channels, Annales Henri Poincaré, Volume 22 (2021) no. 10, p. 3199 | DOI:10.1007/s00023-021-01042-3
- Global semiclassical limit from Hartree to Vlasov equation for concentrated initial data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 6, p. 1739 | DOI:10.1016/j.anihpc.2021.01.004
- On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime, Foundations of Computational Mathematics, Volume 21 (2021) no. 3, p. 613 | DOI:10.1007/s10208-020-09470-z
- The Quantum Wasserstein Distance of Order 1, IEEE Transactions on Information Theory, Volume 67 (2021) no. 10, p. 6627 | DOI:10.1109/tit.2021.3076442
- Semiclassical evolution with low regularity, Journal de Mathématiques Pures et Appliquées, Volume 151 (2021), p. 257 | DOI:10.1016/j.matpur.2021.02.008
- Optimal quantum channels, Physical Review A, Volume 104 (2021) no. 3 | DOI:10.1103/physreva.104.032604
- Quantum Optimal Transport is Cheaper, Journal of Statistical Physics, Volume 181 (2020) no. 1, p. 149 | DOI:10.1007/s10955-020-02571-7
- Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit, Communications in Mathematical Physics, Volume 369 (2019) no. 3, p. 1021 | DOI:10.1007/s00220-019-03357-z
- Gradient flow structure and exponential decay of the sandwiched Rényi divergence for primitive Lindblad equations with GNS-detailed balance, Journal of Mathematical Physics, Volume 60 (2019) no. 5 | DOI:10.1063/1.5083065
- Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation, Journal of Statistical Physics, Volume 177 (2019) no. 1, p. 20 | DOI:10.1007/s10955-019-02356-7
- The quantumN-body problem in the mean-field and semiclassical regime, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2118, p. 20170229 | DOI:10.1098/rsta.2017.0229
Cité par 27 documents. Sources : Crossref
Commentaires - Politique