In this note, we observe that, on a 2-step nilpotent Lie group equipped with a left-invariant SKT structure, the -part of the Bismut–Ricci form is seminegative definite. As an application, we give a simplified proof of the non-existence of invariant SKT static metrics on 2-step nilmanifolds and of the existence of a long-time solution to the pluriclosed flow in 2-step nilmanifolds.
Nous observons que, sur un groupe de Lie nilpotent de classe ≤2, équipé d'une structure de Kähler forte avec torsion (SKT), invariante à gauche, la partie de la forme de Bismut–Ricci est définie semi-négative. Comme application, nous donnons une démonstration simplifée de la non-existence d'une métrique statique SKT sur un espace homogène sous l'action d'un groupe nilpotent de classe ≤2. Nous montrons également l'existence d'une solution à long terme du flot plurifermé dans ces mêmes espaces.
Accepted:
Published online:
Mattia Pujia 1; Luigi Vezzoni 1
@article{CRMATH_2018__356_2_222_0, author = {Mattia Pujia and Luigi Vezzoni}, title = {A remark on the {Bismut{\textendash}Ricci} form on 2-step nilmanifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {222--226}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2018.01.002}, language = {en}, }
Mattia Pujia; Luigi Vezzoni. A remark on the Bismut–Ricci form on 2-step nilmanifolds. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 222-226. doi : 10.1016/j.crma.2018.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.002/
[1] The long-time behavior of the homogeneous pluriclosed flow | arXiv
[2] A local index theorem for non-Kähler manifolds, Math. Ann., Volume 284 (1989) no. 4, pp. 681-699
[3] Homogeneous solutions of pluriclosed flow on closed complex surfaces, J. Geom. Anal., Volume 26 (2016) no. 3, pp. 2130-2154
[4] Static SKT metrics on Lie groups, Manuscr. Math., Volume 140 (2013) no. 3–4, pp. 557-571
[5] Tamed symplectic forms and strong Kähler with torsion metrics, J. Symplectic Geom., Volume 10 (2012) no. 2, pp. 203-223
[6] The pluriclosed flow on nilmanifolds and Tamed symplectic forms, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 883-909
[7] The Ricci flow for simply connected nilmanifolds, Commun. Anal. Geom., Volume 19 (2011) no. 5, pp. 831-854
[8] A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. (2010), pp. 3101-3133
[9] Regularity results for pluriclosed flow, Geom. Topol., Volume 17 (2013) no. 4, pp. 2389-2429
[10] Pluriclosed flow, Born–Infeld geometry, and rigidity results for generalized Kähler manifolds, Commun. Partial Differ. Equ., Volume 41 (2016) no. 2, pp. 318-374
[11] Pluriclosed flow on manifolds with globally generated bundles, Complex Manifolds, Volume 3 (2016), pp. 222-230
[12] A note on canonical Ricci forms on 2-step nilmanifolds, Proc. Amer. Math. Soc., Volume 141 (2013) no. 1, pp. 325-333
Cited by Sources:
☆ This work was supported by G.N.S.A.G.A. of I.N.d.A.M.
Comments - Policy