For every real numbers , with , the curve parametrized by valued in
Pour tous nombres réels , avec , la courbe paramétrée par à valeurs dans
Accepted:
Published online:
Wei-Guo Foo 1; Joël Merker 1; The-Anh Ta 1
@article{CRMATH_2018__356_2_214_0, author = {Wei-Guo Foo and Jo\"el Merker and The-Anh Ta}, title = {Parametric {CR-umbilical} locus of ellipsoids in $ {\mathbb{C}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {214--221}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2017.11.019}, language = {en}, }
Wei-Guo Foo; Joël Merker; The-Anh Ta. Parametric CR-umbilical locus of ellipsoids in $ {\mathbb{C}}^{2}$. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 214-221. doi : 10.1016/j.crma.2017.11.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.11.019/
[1] Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, I, Ann. Mat. Pura Appl. (4), Volume 11 (1932), pp. 17-90
[2] Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II, Ann. Sc. Norm. Super. Pisa, Volume 1 (1932), pp. 333-354
[3] É. Cartan, Sur l'équivalence pseudo-conforme de deux hypersurfaces de l'espace de deux variables complexes, Verh. int. Math. Kongresses Zürich II, 54–56.
[4] Real hypersurfaces in complex manifolds, Acta Math., Volume 133 (1975), pp. 219-271
[5] Every real ellipsoid in admits CR umbilical points, Trans. Amer. Math. Soc., Volume 359 (2007) no. 3, pp. 1191-1204
[6] Spherical Tube Hypersurfaces, Lect. Notes Math., vol. 2020, Springer, Heidelberg, Germany, 2011 (xii+220 p.)
[7] Nonrigid spherical real analytic hypersurfaces in , Complex Var. Elliptic Equ., Volume 55 (2010) no. 12, pp. 1155-1182
[8] Explicit expression of Cartan's connections for Levi-nondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere, Cent. Eur. J. Math., Volume 10 (2012) no. 5, pp. 1801-1835
[9] The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces , Izv. Ross. Akad. Nauk, Ser. Mat., Volume 78 (2014) no. 6, pp. 103-140 (in Russian); translation in: Izv. Math., 78, 6, 2014, pp. 1158-1194
[10] 3-dimensional Cauchy–Riemann structures and 2nd order ordinary differential equations, Class. Quantum Gravity, Volume 20 (2003), pp. 4995-5016
[11] On the mapping problem for algebraic real hypersurfaces, Invent. Math., Volume 43 (1977), pp. 53-68
[12] Holomorphic differential invariants for an ellipsoidal real hypersurface, Duke Math. J., Volume 104 (2000) no. 3, pp. 463-475
[13] A remark on the Chern–Moser tensor, Houst. J. Math., Volume 28 (2002) no. 2, pp. 433-435
Cited by Sources:
Comments - Policy